期刊文献+

Rolling bearing fault diagnosis based on data-level and feature-level information fusion

基于数据级和特征级信息融合的滚动轴承故障诊断
下载PDF
导出
摘要 To address the limitation of single acceleration sensor signals in effectively reflecting the health status of rolling bearings,a rolling bearing fault diagnosis method based on the fusion of data-level and feature-level information was proposed.First,according to the impact characteristics of rolling bearing faults,correlation kurtosis rules were designed to guide the weight distribution of multi-sensor signals.These rules were then combined with a weighted fusion method to obtain high-quality data-level fusion signals.Subsequently,a feature-fusion convolutional neural network(FFCNN)that merges the one-dimensional(1D)features extracted from the fused signal with the two-dimensional(2D)features extracted from the wavelet time-frequency spectrum was designed to obtain a comprehensive representation of the health status of rolling bearings.Finally,the fused features were fed into a Softmax classifier to complete the fault diagnosis.The results show that the proposed method exhibits an average test accuracy of over 99.00%on the two rolling bearing fault datasets,outperforming other comparison methods.Thus,the method can be effectively utilized for diagnosing rolling bearing faults. 针对单一加速度传感器信号难以充分反映滚动轴承健康状态的问题,提出了一种基于数据级和特征级信息融合的滚动轴承故障诊断方法.首先,根据滚动轴承故障的冲击特性,设计了相关峭度规则来指导多传感器信号的权重分配,结合加权融合方法获得高质量的数据级融合信号;随后,设计了一个特征融合卷积神经网络(FFCNN),对从融合信号中提取的一维(1D)特征和从小波时频谱中提取的二维(2D)特征进行融合,获得滚动轴承健康状态的充分表征;最后,将融合后的特征输入Softmax分类器,完成故障诊断.结果表明,所提方法在2个滚动轴承故障数据集上平均测试准确率均高于99.00%,优于其他对比方法,可用于滚动轴承的故障诊断.
作者 Shu Yongdong Ma Tianchi Lin Yonggang 舒永东;马天池;林勇刚(浙江大学流体动力与机电系统国家重点实验室,杭州310027;东南大学机械工程学院,南京211189)
出处 《Journal of Southeast University(English Edition)》 EI CAS 2024年第4期396-402,共7页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.U22A20178) National Key Research and Development Program of China(No.2022YFB3404800) Jiangsu Province Science and Technology Achievement Transformation Special Fund Program(No.BA2023019).
关键词 fault diagnosis information fusion correlation kurtosis feature-fusion convolutional neural network 故障诊断 信息融合 相关峭度 特征融合卷积神经网络
  • 相关文献

参考文献6

二级参考文献17

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部