期刊文献+

油脂组学的分析方法及其在植物油掺假中的应用

Analytical methods of oil omics and their application in vegetable oil adulteration
下载PDF
导出
摘要 为探索安全高效的植物油分析方法以及为植物油真伪鉴定提供理论参考,综述了油脂组学的2种主要分析方法及其在植物油掺假检测中的应用。油脂组学是植物油成分分析、标志代谢物的鉴定、植物油掺假判断的重要方法和手段,其测定方法主要包括色谱-质谱法(液相色谱-质谱法、气相色谱-质谱法、超临界流体色谱-质谱法、多维色谱-质谱法)和散弹枪脂质组学。油脂组学的测定方法准确可靠,可有效鉴别出植物油中掺假油,对保障植物油消费安全具有重要意义。将油脂组学结合化学计量学方法(主成分分析、线性判别分析、偏最小二乘法等)从大量复杂数据中提取建模的有效信息是未来鉴定植物油掺假极具潜力的方向之一。 In order to explore safe and efficient methods for vegetable oil analysis as well as provide theoretical references for vegetable oil adulteration,two main analytical methods of oil omics and their applications in vegetable oil adulteration were reviewed.Oil omics is an important method and tool for the analysis of vegetable oil composition,identification of marker metabolites,and judgment of vegetable oil adulteration,and its determination methods mainly include chromatography-mass spectrometry(liquid chromatography-mass spectrometry,gas chromatography-mass spectrometry,supercritical fluid chromatography-mass spectrometry,multidimensional chromatography-mass spectrometry)and shotgun lipidomics.Oil omics is an accurate and reliable method to identify adulterated vegetable oils,which is of great significance to ensure the safety of vegetable oil consumption.The combination of oil omics and chemometric methods(principal component analysis,linear discriminant score,partial least squares,etc.)to extract effective information for modeling from a large amount of complex data is one of the most promising directions for identifying adulterated vegetable oils in the future.
作者 薛雯雯 吴隆坤 胡盛安 肇立春 王丽娟 XUE Wenwen;WU Longkun;HU Sheng′an;ZHAO Lichun;WANG Lijuan(Colloge of Grain,Shenyang Normal University,Shenyang 110031,China)
出处 《中国油脂》 CAS CSCD 北大核心 2024年第12期138-144,152,共8页 China Oils and Fats
基金 辽宁省应用基础研究计划(2022JH2/101300180) 国家自然科学基金(31571785)。
关键词 油脂组学 植物油 分析方法 植物油掺假 oil omics vegetable oil analytical method vegetable oil adulteration
  • 相关文献

参考文献6

二级参考文献77

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部