摘要
研究了一类具有奇异项和双临界指数的分数阶Schrodinger-Poisson系统.通过扰动法解决了奇异项导致泛函在零点不可微的问题,并且利用非光滑泛函的临界点理论和山路引理,得到了该系统两个正解的存在性.
In this paper,a class of fractional order Schr dinger-Poisson systems with singular terms and double critical exponents is considered.The problem that the singular term causes the functional to be nondifferentiable at zero is solved by a perturbation method,and the existence of two positive solutions of the system is obtained by using the critical point theory of non-smooth generalized functions and mountain lemma.
作者
朱泓洁
张家锋
ZHU Hong-jie;ZHANG Jia-feng(School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China)
出处
《兰州文理学院学报(自然科学版)》
2024年第6期10-19,共10页
Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金
国家自然科学基金项目(11861021)
贵州民族大学自然科学研究项目(GZ-MUZK[2022]YB06)。
关键词
扰动法
非光滑泛函
临界点理论
山路引理
perturbation method
non-smooth functional
critical point theory
mountain lemma