期刊文献+

BOUND STATES FOR A STATIONARY NONLINEAR SCHRDINGER-POISSON SYSTEM WITH SIGN-CHANGING POTENTIAL IN R^3 被引量:2

BOUND STATES FOR A STATIONARY NONLINEAR SCHRDINGER-POISSON SYSTEM WITH SIGN-CHANGING POTENTIAL IN R^3
下载PDF
导出
摘要 We study the following Schrodinger-Poisson system where (Pλ){-△u+ V(x)u+λФ(x)u^p=x∈R^3,-△Ф=u^2,lim│x│→∞Ф(x) =0,u〉0,where λ≥0 is a parameter,1 〈 p 〈 +∞, V(x) and Q(x)=1 ,D.Ruiz[19] proved that(Pλ)with p∈ (2, 5) has always a positive radial solution, but (Pλ) with p E (1, 2] has solution only if λ 〉 0 small enough and no any nontrivial solution if λ≥1/4.By using sub-supersolution method,we prove that there exists λ0〉0 such that(Pλ)with p ∈(1+∞)has alaways a bound state(H^1(R^3)solution for λ∈[0,λ0)and certain functions V(x)and Q(x)in L^∞(R^3).Moreover,for every λ∈[0,λ0),the solutions uλ of (Pλ)converges,along a subsequence,to a solution of (P0)in H^1 as λ→0 We study the following Schrodinger-Poisson system where (Pλ){-△u+ V(x)u+λФ(x)u^p=x∈R^3,-△Ф=u^2,lim│x│→∞Ф(x) =0,u〉0,where λ≥0 is a parameter,1 〈 p 〈 +∞, V(x) and Q(x)=1 ,D.Ruiz[19] proved that(Pλ)with p∈ (2, 5) has always a positive radial solution, but (Pλ) with p E (1, 2] has solution only if λ 〉 0 small enough and no any nontrivial solution if λ≥1/4.By using sub-supersolution method,we prove that there exists λ0〉0 such that(Pλ)with p ∈(1+∞)has alaways a bound state(H^1(R^3)solution for λ∈[0,λ0)and certain functions V(x)and Q(x)in L^∞(R^3).Moreover,for every λ∈[0,λ0),the solutions uλ of (Pλ)converges,along a subsequence,to a solution of (P0)in H^1 as λ→0
出处 《Acta Mathematica Scientia》 SCIE CSCD 2009年第4期1095-1104,共10页 数学物理学报(B辑英文版)
基金 Supported by NSFC(10631030) and CAS-KJCX3-SYW-S03
关键词 Schrodinger-Poisson system sub-supersolutions supercritical Sobolev expo-nent sign-changing potential bound state Schrodinger-Poisson system sub-supersolutions supercritical Sobolev expo-nent sign-changing potential bound state
  • 相关文献

参考文献25

  • 1Allegretto W, Huang Y X. Eigenvalues of the indefinite-weight p-Laplacian in weighted spaces. Funkcial Ekvac, 1995, 38(2): 233-242. 被引量:1
  • 2Ambrosetti A. On Schrodinger-Poisson systems. Milan J Math, 2008, 76(1): 257-274. 被引量:1
  • 3Ambrosetti A, Ruiz D. Multiple bound states for the SchrSdinger-Poisson problem. Commun Contemp Math, 2008, 10(3): 391-404. 被引量:1
  • 4Azzollini A, Pomponio A. Ground state solutions for the nonlinear SchrSdinger-Maxwell equations. J Math Anal Appl, 2008, 345(1): 90-108. 被引量:1
  • 5Benci V, Fortunato D. An eigenvalue problem for the Schrodinger-Maxwell equations. Topol Methods Nonlinear Anal, 1998, 11(2): 283-293. 被引量:1
  • 6Benmlih K. A note on a 3-dimensional stationary Schr6dinger-Poisson system. Electron J Differential Equations, 2004, 2004(26): 1-5. 被引量:1
  • 7Chabrowski J, Costa D G. On a class of SchrSdinger-type equations with indefinite weight functions. Comm Partial Differential Equations, 2008, 33(7 9): 1368-1394. 被引量:1
  • 8Chen J Q, Li S J. Existence and multiplicity of nontrivial solutions for an elliptic equation on R^N with indefinite linear part. Manuscripta Math, 2003, 111(2): 221-239. 被引量:1
  • 9Costa D G, Tehrani H. Existence of positive solutions for a class of indefinite elliptic problems in R^N. Calc Vat Partial Differential Equations, 2001, 13(2): 159-189. 被引量:1
  • 10D'Aprile T, Mugnai D. Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv Non- linear Stud, 2004, 4(3): 307-322. 被引量:1

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部