期刊文献+

Wave interaction for a generalized higher-dimensional Boussinesq equation describing the nonlinear Rossby waves

下载PDF
导出
摘要 Based on an algebraically Rossby solitary waves evolution model,namely an extended(2+1)-dimensional Boussinesq equation,we firstly introduced a special transformation and utilized the Hirota method,which enable us to obtain multi-complexiton solutions and explore the interaction among the solutions.These wave functions are then employed to infer the influence of background flow on the propagation of Rossby waves,as well as the characteristics of propagation in multi-wave running processes.Additionally,we generated stereogram drawings and projection figures to visually represent these solutions.The dynamical behavior of these solutions is thoroughly examined through analytical and graphical analyses.Furthermore,we investigated the influence of the generalized beta effect and the Coriolis parameter on the evolution of Rossby waves.
机构地区 College of Science
出处 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第5期1415-1424,共10页 海洋湖沼学报(英文)
基金 Supported by the National Natural Science Foundation of China(No.32360249) the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2022QN01003) the University Scientific Research Project of Inner Mongolia Autonomous Region of China(No.NJZY22484) the Scientific Research Improvement Project of Youth Teachers of Inner Mongolia Autonomous Region of China(No.BR230161) the Inner Mongolia Agricultural University Basic Discipline Scientific Research Launch Fund(No.JC2020003)。
  • 相关文献

参考文献6

二级参考文献55

  • 1Deift P, Tomei C and Trubowitz E 1982 Commun. Pure Appl. Math. 35 567 被引量:1
  • 2Bona J L and Sachs R L 1988 Comm. Math. Phys. 118 15 被引量:1
  • 3Weiss J 1985 J. Math. Phys. 26 258 被引量:1
  • 4Dai Z D, Huang J, Jiang M R and Wang S H 2005 Chaos, Solitons & Fractals 26 1189 被引量:1
  • 5Dai Z D, Jiang M R, Dai Q Y and Li S L 2006 Chin. Phys. Lett. 23 1065 被引量:1
  • 6HuXB, GuoB L and Tam HW2003 J. Phys. Soc. Jpn. 72 189 被引量:1
  • 7Dai Z D, Huang J and Jiang M R 2006 Phys. Lett. A 352 411 被引量:1
  • 8Dai Z D and Huang J 2005 Chin. J. Phys. 43 349 被引量:1
  • 9Dai Z D, Li Z T, Li D L and Liu Z J 2007 Chin. Phys. Lett. 24 1429 被引量:1
  • 10Dai Z D, Li S L, Dai Q Y and Huang J 2007 Chaos, Solitons & Fractals 34(4) 1148 被引量:1

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部