摘要
Annual Rossby wave is a key component of the ENSO phenomenon in the equatorial Pacific Ocean. Due to the paucity and seasonal bias in historical hydrographic data,previous studies on equatorial Rossby waves only gave qualitative description. The accumulation of Argo measurements in recent years has greatly alleviated the data problem. In this study,seasonal variation of the equatorial Pacific Ocean is examined with annual harmonic analysis of Argo gridded data. Results show that strong seasonal signal is present in the western equatorial Pacific and explains more than 50% of the thermal variance below 500 m. Lag-correlation tracing further shows that this sub-thermocline seasonal signal originates from the eastern equatorial Pacific via downward and southwestward propagation of annual Rossby waves. Possible mechanisms for the equatorward shift of Rossby wave path are also discussed.
Annual Rossby wave is a key component of the ENSO phenomenon in the equatorial Pacific Ocean. Due to the paucity and seasonal bias in historical hydrographic data, previous studies on equatorial Rossby waves only gave qualitative description. The accumulation of Argo measurements in recent years has greatly alleviated the data problem. In this study, seasonal variation of the equatorial Pacific Ocean is examined with annual harmonic analysis of Argo gridded data. Results show that strong seasonal signal is present in the western equatorial Pacific and explains more than 50% of the thermal variance below 500 m. Lag-correlation tracing further shows that this sub-thermocline seasonal signal originates from the eastern equatorial Pacific via downward and southwestward propagation of annual Rossby waves. Possible mechanisms for the equatorward shift of Rossby wave path are also discussed.
基金
Supported by the National Basic Research Program of China(973 Program)(No.2012CB417400)
the National Natural Science Foundation of China(Nos.41421005,U1406401)