摘要
展青霉素是由曲霉属和青霉属的某些真菌在特定条件下产生的有毒次级代谢产物,对人和动物具有急性毒性、生殖毒性、免疫毒性等。展青霉素易溶于水、在酸性介质中稳定存在。水果在生长、采收、贮藏和加工阶段均易受到展青霉素的侵染,因此为降低展青霉素带来的危害,保障人体健康,减少行业经济损失,研究安全高效的展青霉素降解方法十分必要。光催化降解技术因其具有高降解率、环境友好等优点,逐渐成为降解水果及其制品中展青霉素的研究热点。该文系统介绍了展青霉素的理化性质、生物合成、污染现状、危害及防控手段,重点阐述了光催化法及其降解展青霉素的机理和研究进展,提出了光催化降解展青霉素技术实现工业化应用的未来展望。
Patulin is a secondary metabolite produced by fungi such as Aspergillus and Penicillium,which has acute toxicity,reproductive toxicity,immunotoxicity and other adverse effects on humans and animals.patulin is easily soluble in water and stability in acidic media.Fruits are susceptible to patulin contamination during their growth,harvesting,storage,and processing stages,resulting in widespread contamination in fruits and their products.Therefore,it is essential to study safe and efficient patulin removal methods to ensure food safety,protect public health,and minimize economic losses in the industry.Photocatalytic degradation technology has emerged as a prominent research area for removing patulin from fruits and their products because of its high degradation rate and eco-friendliness.This article systematically reviews the physicochemical properties,biosynthesis,prevalence of pollution,dangers,as well as the preventive and control measures of patulin,focusing on the advancements in photocatalytic method and its degradation mechanism.It also anticipates future prospects for industrial applications of patulin photocatalytic degradation technology.
作者
连胜青
韩杨莹
孙长坡
周文化
刘虎军
王峻
LIAN Shengqing;HAN Yangying;SUN Changpo;ZHOU Wenhua;LIU Hujun;WANG Jun(College of Food Science and Engineering,Central South University of Forestry and Technology,Changsha 410004,China;Academy of National Food and Strategic Reserves Administration,Beijing 100037,China;Standards and Quality Center of National Food and Strategic Reserves Administration,Beijing 100834,China)
出处
《食品与发酵工业》
CAS
CSCD
北大核心
2024年第18期375-383,共9页
Food and Fermentation Industries
基金
中央级公益性科研院所基本科研业务费专项资金(JY2206)。
关键词
光催化
展青霉素
脱毒
降解机理
photocatalysis
patulin
detoxification
degradation mechanism