期刊文献+

基于改进YOLOv5算法的创伤伤情识别与定位研究

Trauma condition identification and localization based on improved YOLOv5 algorithm
下载PDF
导出
摘要 目的:为减少因创伤患者伤情复杂多变而导致的误检和漏检,提出一种基于注意力(attention)机制的YOLOv5算法。方法:以YOLOv5算法为基本框架,分别在特征提取网络和特征融合网络末端嵌入自注意力模块,并在特征融合网络中引入卷积注意力机制模块,构建YOLOv5-attention算法。在Kaggle平台上对YOLOv5-attention算法进行训练验证,并与Fast-RCNN、YOLOv5算法对骨折部位的识别效果进行比较。结果:YOLOv5-attention算法对创伤患者骨折部位识别的平均精度为0.8598,优于Fast-RCNN算法(平均精度为0.6975)和YOLOv5算法(平均精度为0.8471)。结论:YOLOv5-attention算法检测准确率高、鲁棒性好,能够有效识别和准确定位创伤患者伤情。 Objective To propose an attention mechanism-based YOLOv5 algorithm to relieve the wrong or missed diagnosis due to the complexity and variability of trauma conditions.Methods A YOLOv5-attention algorithm was constructed with YOLOv5 algorithm as the basic framework,which introduced the convolutional attention mechanism module into the feature fusion network and embedded the self-attention module at the end of the feature extraction network and the feature fusion network,respectively.The YOLOv5-attention algorithm was trained and validated on the Kaggle platform and compared with Fast-RCNN and YOLOv5 algorithms for determining fracture sites.Results The YOLOv5-attention algorithm achieved an average presicion of 0.8598 for fracture site determination,which behaved better than Fast-RCNN algorithm with an average presicion of 0.6975 and YOLOv5 algorithm with an average presicion of 0.8471.Conclusion The YOLOv5-attention algorithm with high accuracy and robustness can identify and locate trauma conditions effectively and accurately.
作者 王钰姝 粘永健 彭雪 谢锦 齐君 谭瑶 WANG Yu-shu;NIAN Yong-jian;PENG Xue;XIE Jin;QI Jun;TAN Yao(Department of Emergency Medicine,the First Affiliated Hospital of Army Medical University,Chongqing 400038,China;Department of Biomedical Engineering,Army Medical University,Chongqing 400037,China;Department of Otolaryngology,the First Affiliated Hospital of Army Medical University,Chongqing 400038,China;Training Center for Clinical Skills,Army Medical Center,Chongqing 400042,China;Department of Military Preventive Medicine,Army Medical University,Chongqing 400037,China)
出处 《医疗卫生装备》 CAS 2024年第9期1-6,共6页 Chinese Medical Equipment Journal
关键词 YOLOv5 注意力机制 创伤伤情 伤情识别 伤情定位 YOLOv5 attention mechanism trauma condition trauma condition identification trauma condition localization
  • 相关文献

参考文献4

二级参考文献16

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部