期刊文献+

机床刀具磨损状态集成学习识别及测试

Machine Tool Wear State Integrated Learning Identification and Testing
下载PDF
导出
摘要 为了提高刀具磨损状态识别能力,开发出了刀具磨损阶段回归模型方法。把AdaBoost集成算法加入回归模型,降低磨损过程中回归模型预测误差。研究结果表明:平稳磨损阶段所需时间最短,最长为急剧磨损阶段。进行刀具磨损识别期间,集成学习算法可以获得比单独算法更优性能。磨损期间误差受到各阶段磨损变化率的较大影响。采用集成方法AdaBoost得到了较小MAE,只有36.3%,可以有效促进非集成算法模型的性能提升,实现集成学习算法模型的改善效果。 In order to improve the ability of tool wear state recognition,a regression model of tool wear stage was developed.AdaBoost integrated algorithm is added to the regression model to reduce the prediction error of the regression model in the process of wear.The results show that the time required for smooth wear stage is the shortest,while the time required for sharp wear stage is the longest.During tool wear identification,the integrated learning algorithm can obtain better performance than the single algorithm.The error during wear is greatly affected by the rate of wear change at each stage.The integration method AdaBoost obtained a small MAE,only 36.3%,which can effectively promote the performance improvement of the non-integrated algorithm model and achieve the improvement effect of the integrated learning algorithm model.
作者 钟旭佳 Zhong Xujia(College of Intelligent Manufacturing,Zhengzhou City Vocational College,Xinmi Henan 452370,China)
出处 《机械管理开发》 2024年第8期4-6,共3页 Mechanical Management and Development
基金 河南省高等学校重点科研项目(23B510012)。
关键词 刀具磨损 回归模型 集成算法 状态识别 tool wear regression model integration algorithm state recognition
  • 相关文献

参考文献9

二级参考文献47

  • 1ESCALONA P M, MAROPOULOS P G. Empirical expression of tool wear when face milling 416 S S [C]. Proceedings of ASME Pressure Vessels and Piping Division Conference, 2009, 7: 1697-1705. 被引量:1
  • 2ABOU-EL-HOSSEIN K A, YAHYA Z. High-speed end-milling of AISI 304 stainless steels using new geometrically developed carbide inserts [J]. Journal of Material Processing Technology, 2005, 162-163: 596-602. 被引量:1
  • 3KISHAWY H A, DUMITRESCU M, NG E G, ELBESTAWI M A. Effect of coolant strategy on tool performance, chip morphology and surface quality during high speed machining of A356 aluminium alloy [J]. International Journal of Machine Tools & Manufacture, 2005, 45(2): 219-227. 被引量:1
  • 4GINTING A, NOUARI M. Experimental and numerical studies on the performance of alloyed carbide tool in dry milling of aerospace material [J]. International Journal of Machine Tools and Manufacture, 2006, 46: 758-768. 被引量:1
  • 5ELBESTAWI M A, CHEN L, BECZE C E, EL-WARDANY T I. High-speed milling of dies and molds in their hardened state [J]. Annals of the CIRP, 1997, 46(1): 57-62. 被引量:1
  • 6ESCALONA P M, DIAZ N, CASSIER Z. Prediction of tool wear mechanisms in face milling AISI 1045 steel [J]. Journal of Materials Engineering and Performance, 2012, 21(6): 797-808. 被引量:1
  • 7李友生,邓建新,张辉,李剑锋.高速车削钛合金的硬质合金刀具磨损机理研究[J].摩擦学学报,2008,28(5):443-447. 被引量:44
  • 8徐进.高速硬态切削工件表层显微硬度与白层研究[J].机械设计与制造,2009(2):192-194. 被引量:4
  • 9李迎.硬切削加工技术的研究现状与发展趋势[J].组合机床与自动化加工技术,2011(6):107-112. 被引量:12
  • 10陈保家,陈雪峰,李兵,曹宏瑞,蔡改改,何正嘉.Logistic回归模型在机床刀具可靠性评估中的应用[J].机械工程学报,2011,47(18):158-164. 被引量:35

共引文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部