期刊文献+

任务协作表示增强的要素及关系联合抽取模型

Task-Collaboration Representation Enhanced Joint Extraction Model for Elements and Relationships
下载PDF
导出
摘要 对文本中诸如实体与关系、事件及其论元等要素及其特定关系的联合抽取是自然语言处理的一项关键任务.现有研究大多采用统一编码或参数共享的方式隐性处理任务间的交互,缺乏对任务之间特定关系的显式建模,从而限制模型充分利用任务间的关联信息并影响任务间的有效协同.为此,提出了一种基于任务协作表示增强的要素及关系联合抽取模型(Task-Collaboration Representation Enhanced model for joint extraction of elements and relationships,TCRE).该模型旨在从多个阶段处理任务间的特定关系,帮助子任务进行更细致的调节和优化,促进整体性能的提升.在三个关系抽取和一个事件抽取数据集上进行实验,TCRE在实体识别和关系提取任务上平均性能分别提高0.57%和0.77%,在触发词识别和论元角色分类任务上分别提高0.7%和1.4%.此外,TCRE还显示出在缓解“跷跷板现象”方面的作用. Jointly extracting elements like entities and their relationships,as well as events and their arguments,is a crucial natural language processing task.Current methods,primarily based on unified coding or parameter sharing,fail to explicitly model inter-task relationships.This limitation restricts the use of inter-task correlations and hinders effective collaboration.To address this,we propose a task-collaboration representation enhanced model for joint extraction of elements and relationships(TCRE).TCRE strategically captures and leverages specific inter-task relationship representations across multiple stages,facilitating precise tuning and optimization of subtasks,thereby enhancing overall model performance.In evaluations on three relation extraction and one event extraction datasets,TCRE demonstrated performance improvements of 0.57%in entity recognition,0.77%in relation extraction,0.7%in trigger word recognition,and 1.4%in argument role classification.Additionally,TCRE effectively mitigates the“seesaw phenomenon”.
作者 刘小明 王杭 杨关 刘杰 曹梦远 LIU Xiao-ming;WANG Hang;YANG Guan;LIU Jie;CAO Meng-yuan(School of Computer Science,Zhongyuan University of Technology,Zhengzhou,Henan 450007,China;Zhengzhou Key Laboratory of Text Processing and Image Understanding,Zhengzhou,Henan 450007,China;School of Information Science,North China University of Technology,Beijing 100144,China;Research Center for Language Intelligence of China,Beijing 100089,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2024年第6期1955-1962,共8页 Acta Electronica Sinica
基金 “新一代人工智能”国家科技重大专项(No.2020AAA0109703) 国家自然科学基金(No.62076167,No.61772020,No.U23B2029) 河南省高等学校重点科研项目(No.23A520022)。
关键词 关系表示 联合抽取 任务协作 多任务学习 跷跷板现象 relationship representation joint extraction task collaboration multi task learning seesaw phenomenon
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部