期刊文献+

基于SOA-VMD-ICA的海水泵激励源特征提取方法

Feature Extraction Method for Seawater Pump Excitation Sources Based on SOA-VMD-ICA
下载PDF
导出
摘要 针对海水泵复杂多源激励特征提取问题,提出了一种海鸥优化算法(SOA)、变分模态分解(VMD)和独立分量分析(ICA)相结合的海水泵激励源特征提取方法。基于单通道测量信号,采用VMD算法与SOA算法选取信号平方包络谱峭度统计量作为适应度函数,寻优获取模态分解数量K、惩罚系数α及特征模态函数(IMF)分量。采用信号排列熵作为噪声检验函数,合理选取排列熵阈值,对IMF分量进行噪声筛选,获取非噪声IMF分量信号。将非噪声IMF分量与原输入信号组合,采用快速独立成分分析(Fast-ICA)算法计算得到激励源信号向量,从而实现激励源特征信号的提取。通过实船海水泵激励源特征提取试验及对比分析,验证了所提方法的有效性。研究结果表明,所提的SOA-VMD-ICA方法能满足单通道测量条件海水泵激励源特征提取准确性要求。 Aiming at the complex multi-source excitation feature extraction problems of the seawater pumps,a feature extraction method was proposed based on the combination of SOA,VMD and ICA for the excitation sources of the seawater pumps.Based on the single-channel measurement signals,the VMD algorithm and SOA optimization algorithm were used to calculate the signal square envelope spectral kurtosis statistic as the fitness function to optimize the modal decomposition number K,the penalty coefficientα,and the eigenmodal function components(IMF).The signal alignment entropy was used as the noise test function.After choosing a reasonable threshold value,the IMF components for noise were screened then the non-noise IMF component signals were obtained.Fast-ICA algorithm was used to obtain the excitation source signal vector,thus realizing the excitation source feature signal extraction.The effectiveness of the feature extraction method was verified through the experimental and comparative analysis of the excitation source feature extraction of the real ship s seawater pumps.The results show that SOA-VMD-ICA algorithm meet the requirements of extracting the excitation source features of seawater pumps accurately under single-channel measurement conditions.
作者 滕佳篷 武国启 TENG Jiapeng;WU Guoqi(Dalian Measurement and Control Technology Research Institute,Dalian,Liaoning,116013)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2024年第8期1373-1380,共8页 China Mechanical Engineering
基金 基础产品创新科研计划(0207024)。
关键词 特征提取 海水泵 独立分量分析 海鸥优化算法 变分模态分解 feature extraction seawater pump independent component analysis(ICA) seagull optimization algorithm(SOA) variational modal decomposition(VMD)
  • 相关文献

参考文献13

二级参考文献72

  • 1孙涛,徐光华,张四聪,张春梅.经验模式分解法结合相关积分法的离心风机喘振先兆辨识[J].动力工程,2006,26(6):849-853. 被引量:5
  • 2诺顿MP 盛元生等(译).工程噪声和振动分析基础[M].北京:航空工业出版社,1993.155-187. 被引量:11
  • 3沈国际,陶利民,徐永成.时域同步平均的相位误差累积效应研究[J].振动工程学报,2007,20(4):335-339. 被引量:17
  • 4Comon P.Independent Component Analysis,a New Concept?Signal Processing,1994,36:287~314 被引量:1
  • 5Lyon R H.Machinery Noise and Diagnostics.Boston:Butterworths Publishing House,1987 被引量:1
  • 6Ypm A,Leshem A,Robert P W D.Blind Separation of Rotating Machine Sources:Bilinearforms and Convolutive Mxtures.Neurocomputin,2002,49:349~468 被引量:1
  • 7Anupama G,Deng G,Kalman J,et al.Independent Component Analysis Applied to Electrogram Classification During Atrial Fibrillation.The 14th IEEE International Conference on Pattern Recognition,Melbourne,Australia,1998 被引量:1
  • 8Tong L,Liu R,Soon V,et al.Indeterminacy and Identifiability of Blind Identification.IEEE Transaction on Circuits System,1991,38(5):499~509 被引量:1
  • 9Aapo H.Survey on Independent Component Analysis.Neural Computing Surveys,2000,2:94~128 被引量:1
  • 10Cardoso J F,Beate H L.Equivariant Adaptive Source Separation.IEEE Transaction on Signal Processing,1996,45 (2):434~444 被引量:1

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部