期刊文献+

基于频谱相关的时域盲分离排序算法 被引量:1

A Permutation Method in Blind Source Separation Based on Correlation of Spectrum
下载PDF
导出
摘要 由于水声信道的时变性,水声信号分离后存在排序模糊性,限制了盲分离算法的应用。针对盲分离后信号存在排序模糊性的问题,提出了一种基于频谱相关的盲分离排序算法。根据水声环境中各信号的频谱差异,对分离后信号进行重新排序,来改善盲分离算法的排序模糊性。仿真实验表明,该算法可以有效消除分离信号的顺序不确定性,提高盲分离算法的性能。 Because the signal channel changes every minute, acoustic signals underwater have permutation inconsistency after separation, which limits the performance of blind source separation. To solve permutation problem, a method in blind source separation based on correlation of spectrum is presented. According to contrast of signals ' spectrum, signals are per- mutated in order to improve performance of blind source separation. The result shows that it is an effective method in eliminating the permutation inconsistency.
出处 《电声技术》 2012年第10期63-66,共4页 Audio Engineering
关键词 盲分离 排序模糊性 频谱相关 水声信号 blind source separation permutation inconsistency correlation of spectrum acoustic signals underwater
  • 相关文献

参考文献10

  • 1L1 H L,ADALI T. Gradient and fixed-point complex ICA al- gorithms based on kurtosis maximization [ C ]//Machine Learning for Signal Processing. Maynooth, Ireland: [ s. n. ] ,2006. 被引量:1
  • 2张明键..盲分离算法的研究[D].华南理工大学,2004:
  • 3NOVEY M, ADAH T. Complex ICA by negentropy maximi- zation [ J ]. IEEE Transactions on Neural Networks, 2008 (10) :596 -609. 被引量:1
  • 4焦卫东,杨世锡,钱苏翔,严拱标.基于FFT-MCC分析的ICA(BSS)盲不确定性消除[J].中国机械工程,2006,17(7):673-677. 被引量:8
  • 5DOUGLAS S C, GUPTA M, SAWADA H, et al. Spatio-tem- poral fast ICA algorithms for the blind separation of convolu- tire mixtures [ J ]. IEEE Transaction on Audio, Speech and Language Processing, 2007, 15(5) :1511 - 1520. 被引量:1
  • 6杨志聪..语音信号的盲分离算法研究[D].武汉科技大学,2009:
  • 7RADOSLAW M, ALFRED M. An approach for solving the per-mutation problem of convolutive blind source separation based on statistical signal models [ J]. IEEE Transactions on Audio Speech and Language Processing,2009,17 (1): 117 - 126. 被引量:1
  • 8张安清..盲分离技术及其在水声信号中的应用研究[D].大连理工大学,2006:
  • 9綦敦浩,章新华,范文涛.水声信号盲分离排序算法[J].声学技术,2011,30(4):20-22. 被引量:1
  • 10陶玉福,刘庆华,黄斌,樊伟.一种新的多通道混合语音时域盲分离算法[J].电声技术,2009,33(7):60-62. 被引量:2

二级参考文献20

  • 1诺顿MP 盛元生等(译).工程噪声和振动分析基础[M].北京:航空工业出版社,1993.155-187. 被引量:11
  • 2HYVARINEN A,KARHUNEN J,OJA E.Independent Component Analysis[M].New York:JohnWiley sons,lnc,2001:391-406. 被引量:1
  • 3BUCHER H,AICHNER R,KELLERMANN W.A generalization of blind source separation algorithms for convolutive mixtures based on second-order statistics[J].IEEE Trans.on Speech and Audio Processing,2005,13 (1):120-134. 被引量:1
  • 4HYVARINEN A,KARHUNEN J,OJA E.独立分量分析[M].周宗潭,董国华,徐昕,等,译.北京:电子工业出版社,2007:313-315. 被引量:2
  • 5SPATH H.Cluster analysis algorithms for data recduction and classification of objects[M].Chichester:Ellis Horwood,1980. 被引量:1
  • 6KOLDOVSKY Z,TICHAVSKY P,OJA E.Efficient variant of algorithm fastlCA for independent component analysis attaining the cramer-Rao lower bound[J].IEEE Neural Networks,2006,17:1265-1277. 被引量:1
  • 7KOLDOVSKY Z,TICHAVSKY P.Time-domain blind audio source separation using advanced ICA methods[C]// Proceedings of Inter Speech 2007:the 8th Annual Conference of the International Speech Commuication Assocation.Belgium:[s.n.],2007:846-849. 被引量:1
  • 8VINCENT E,GRIBONVAL R,FEVOTI'E C.Performance measurement in blind audio source separation[J].IEEE Trans on Speech and Audio Separation,2006,14(4):1462-1469. 被引量:1
  • 9PARRA L,SPENCE C.Convolutive blind separation of non-stationary source[J].IEEE Trans.on Speech and Audio Processing,2000,8(3):320-327. 被引量:1
  • 10HIROSHI Sawada.Convolutive blind source separation for more than two sources in the frequency domain[EB/OL].(2004 -07 -09)[2008 -09 -23].http://www.kecl.ntt.co.jp/icl/ signal/sawada/demo/bss2to4/index.html,2004, 被引量:1

共引文献8

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部