期刊文献+

视觉大模型在轨交隧道缺陷检测中的应用研究

Application of Large Vision Model for Defect Detection in Orbital Tunnel
下载PDF
导出
摘要 本文针对轨交隧道巡检过程中,人工巡检工作存在的效率低、容易遗漏等问题,提出采用轨交检测车采集隧道内壁信息,结合轨交隧道的相关巡检规范,基于V-MoE视觉大模型开发轨交视觉大模型。与传统的机器视觉相比,在隧道壁潜在风险和缺陷检测方面,该方法的识别类型和识别精度均大幅提升,可以有效提升识别准确率,是视觉大模型在新领域的重要突破。 This article addresses the issues of low efficiency and easy omission in manual inspection during the inspection process of rail transit tunnels.It proposes a rail transit visual model developed based on the V-MoE visual model,which uses rail transit inspection vehicles to collect information on the inner walls of tunnels and combines with relevant inspection standards for rail transit tunnels.Compared with traditional machine vision,this method significantly improves the recognition type and accuracy in detecting potential risks and defects on tunnel walls,effectively improving recognition accuracy.It is an important breakthrough in the new field of visual modeling.
作者 方爱国 FANG Aiguo(Shanghai Dianze Intelligent Technology Co.,Ltd.,Shanghai 200333)
出处 《中国科技纵横》 2024年第10期27-30,共4页 China Science & Technology Overview
关键词 视觉大模型 V-MoE 轨道交通 隧道壁缺陷检测 large vision model V-MoE rail transit tunnel wall defect detection
  • 相关文献

参考文献9

二级参考文献70

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部