期刊文献+

基于蚁群算法的定制化门窗材空极大空间码垛策略研究

Stacking Strategy of Customized Door and Window Materials with Empty Maximal Spaces Based on Ant Colony Algorithm
下载PDF
导出
摘要 目的提高货物装载效率,满足定制化门窗材码垛要求,提高托盘码垛的空间利用率。方法首先根据实际情况构建门窗材码垛的数学模型,然后针对门窗材在码垛托盘内的空间利用率问题,制定空极大空间的码放策略,并采用蚁群算法来寻找门窗材最优的码放位置和摆放姿态,最后与传统经验算法的空间利用率进行对比。结果在相同订单样本量下,文中的蚁群算法相较于传统的经验算法,可将垛型的空间利用率提高8.82%,且所得垛型的高度更低、稳定性更强。结论所提出的数学模型能够为门窗材在线码垛的整体垛型优化提供理论依据。 The work aims to enhance the loading efficiency of goods and meet the stacking requirements of customized door and window materials,so as to improve the space utilization of pallet stacking.Firstly,a mathematical model for stacking doors and windows materials was constructed based on practical situations.Subsequently,in allusion to the issue of spatial utilization of door and window materials within stacking pallets,a stacking strategy employing empty maximal spaces was devised.An ant colony algorithm was designed to search for the optimal stacking position and orientation for door and window materials.Finally,a comparison of spatial utilization rates was conducted with traditional empirical algorithms.The results indicated that,under the same order sample size,the ant colony algorithm proposed in this study could improve the spatial utilization rate of stacks by 8.82%compared with traditional empirical algorithms.Additionally,the obtained stacking configurations exhibited lower stack heights and greater stability.The mathematical model proposed in this study provides a basis for the overall optimization of stacking configurations for online stacking of door and window materials.
作者 曲文 蒋志维 丁禹程 杨春梅 石昌玉 QU Wen;JIANG Zhiwei;DING Yucheng;YANG Chunmei;SHI Changyu(School of Electrical and Mechanical Engineering,Northeast Forestry University,Harbin 150006,China)
出处 《包装工程》 CAS 北大核心 2024年第13期238-246,共9页 Packaging Engineering
基金 中央高校基本科研业务费专项资金(2572020DR12,2572023CT14-06) 黑龙江省重点研发项目(SC2022ZX01A0183)。
关键词 门窗材 定制化加工 柔性码垛 最优空间 蚁群算法 doors and windows materials customized processing flexible stacking optimal space ant colony algorithm
  • 相关文献

参考文献12

二级参考文献118

  • 1李茹杨,彭慧民,李仁刚,赵坤.强化学习算法与应用综述[J].计算机系统应用,2020,29(12):13-25. 被引量:42
  • 2黄文奇,刘景发.基于欧氏距离的矩形Packing问题的确定性启发式求解算法[J].计算机学报,2006,29(5):734-739. 被引量:26
  • 3张德富,魏丽军,陈青山,陈火旺.三维装箱问题的组合启发式算法[J].软件学报,2007,18(9):2083-2089. 被引量:50
  • 4Wong T N,ChanLC F,lau H C W.Machining process sequencing with fuzzy expert system and genetic algorithms[J].Engineering Computations,2003,19:191-202. 被引量:1
  • 5Kang J,Park S.Algorithms for the variable sized bin packing problem[J].European Journal of Operational Research,2003,147:365-372. 被引量:1
  • 6Brown E C,Sumichrast R T.Impact of the replacement heuristic in grouping genetic algorithm[J].Computer and Operations Research,2003,30:1575-1593. 被引量:1
  • 7Miller D M,Chen H,Matson J,et al.Ahybrid genetic algorithm for the single machine scheduling problem[J].Journal of Heuristics,1999,5:437-454. 被引量:1
  • 8Koksalan M,Keha A B.Using genetic algorithms for single machine bicriteria scheduling problems[J].European Journal of Operational Research,2003,145:543-556. 被引量:1
  • 9Kovalyov M Y,Ng C T,Cheng T C,et al.Singlemachine scheduling with a variable common due date and resource-dependent processing times[J].Computer and Operations Research,2003,30:1173-1185. 被引量:1
  • 10Kis Tamas.Job-shop scheduling with processing alternatives[J].European Journal of Operational Research,2003,151:307-332. 被引量:1

共引文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部