摘要
[目的]CO_(2)管道运行过程中涉及泄漏、投产等瞬态过程,由于CO_(2)具有特殊的物性和相特性,使得CO_(2)管道瞬态过程模拟难度较大,目前尚缺乏CO_(2)管道瞬态过程数值模拟软件的适应性评价。[方法]选取OLGA与Leda Flow两款主流瞬态模拟软件建立CO_(2)瞬态泄漏数值仿真模型,并利用自行搭建的DN200高压CO_(2)管道泄漏实验装置,开展不同相态CO_(2)瞬态泄漏实验,从压力变化、温度变化、相特性等多个角度评价软件的适应性;以中国某长输CO_(2)管道为例,将该CO_(2)管道瞬态投产现场数据与软件模拟结果进行对比,从工程角度验证两款软件的适应性。[结果]通过对比泄漏实验结果与软件模拟结果发现,对于两个设定的泄漏工况,OLGA软件泄漏压力计算的平均误差分别为15.3%、14.7%,而Leda Flow软件则为16.7%、18.0%,故OLGA软件与Leda Flow软件压力求解准确度相近。OLGA、Leda Flow软件分别存在低估、高估泄漏过程管内最低温度的情况,OLGA软件预测两个测点处最低温度的平均相对误差分别为21.2%、24.5%,而Leda Flow软件平均相对误差分别为13.1%、11.1%。对于某CO_(2)管道投产过程中的压力、温度,OLGA软件模拟的结果平均相对误差分别为1.2%、6.1%,而Leda Flow软件则分别为1.3%、5.2%,可见两款软件模拟结果与现场数据均较为接近。[结论]在CO_(2)管道泄漏过程中,OLGA软件低估泄漏过程最低温度可保证管道低温安全性,且OLGA软件更适用于CO_(2)泄漏过程中管内压力、温度及相特性的预测;在CO_(2)管道投产过程中,OLGA、Leda Flow两款软件均适用于管内的压力、温度模拟研究。
[Objective] Transient processes like leakage and commissioning in CO_(2) pipeline operation pose simulation challenges due to the unique physical properties and phase behavior of CO_(2). Currently, there is a deficiency in adaptability evaluation of numerical simulation software for CO_(2) pipeline transient processes. [Methods] This study utilized two mainstream transient simulation software, OLGA and LedaFlow, to establish a numerical simulation model for transient CO_(2) leakage. Testing was conducted on a self-built experimental setup for DN200 high-pressure CO_(2) pipeline leakage across different phases, with software adaptability evaluated in terms of pressure, temperature and phase behavior. Furthermore,the adaptability of these software types was verified through a comparison of the simulation results with field data from transient commissioning of a long-distance CO_(2) pipeline in China. [Results] The comparison of the results from leakage test and software simulations revealed that under two specified leakage conditions, OLGA exhibited average pressure calculation errors of 15.3% and 14.7%, whereas LedaFlow exhibited errors of 16.7% and 18.0%. Consequently, the pressure calculation accuracy of OLGA closely aligns with that of LedaFlow. OLGA underestimated the lowest temperature in the pipe during leakage, with average relative errors of 21.2% and 24.5% at the two measuring points. In contrast, LedaFlow overestimated the lowest temperature with average relative errors of 13.1% and 11.1% at the two measuring points. During the commissioning of a CO_(2) pipeline, OLGA exhibited average relative errors of 1.2% for pressure and 6.1% for temperature, whereas Leda Flow exhibited errors of 1.3% and 5.2% for the same parameters. The simulation results from both software packages closely align with the field data. [Conclusion] In conclusion, in the process of CO_(2) pipeline leakage, OLGA underestimates the lowest temperature during the leakage process, which can enhance the low-temperature safety of the pipeli
作者
马馨苑
欧阳欣
朱建鲁
陈俊文
刘罗茜
杨腾
宋光春
MA Xinyuan;OUYANG Xin;ZHU Jianlu;CHEN Junwen;LIU Luoqian;YANG Teng;SONG Guangchun(College of Pipeline and Civil Engineering,China University of Petroleum(East China)/Shandong Key Laboratory of Oil&Gas Storage and Transportation Safety;PipeChina Institute of Science and Technology;Southwest Branch of China Petroleum Engineering&Construction Corporation)
出处
《油气储运》
CAS
北大核心
2024年第5期590-599,共10页
Oil & Gas Storage and Transportation
基金
国家石油天然气管网集团有限公司重大科技攻关课题“超临界CO_(2)管道输送工艺与安全技术研究”,GWHT20220011708。