期刊文献+

北京市六环内出行韧性空间分异250-m格网数据集研发(2020)

Development of a 250-m Grid Dataset for Travel Resilience Spatial Differentiation within the Sixth Ring Road of Beijing(2020)
原文传递
导出
摘要 出行韧性反映了居民出行在经受负向扰动之后恢复到原有供需均衡状态或形成新均衡状态的过程,能够过程性、连续性、动态性表征居民出行与扰动、城市空间、交通系统的相互作用关系。出行韧性的测度关键是研究对象的交通需求如何恢复到扰动之前的水平,或在与扰动长期耦合的过程中形成稳定状态的能力。作者根据2020年2月至9月的北京市手机信令数据,以北京市六环以内为研究区域,采用K-means聚类方法,计算了北京市六环内出行韧性空间分异数据集(2020)。该数据集内容包括:(1)基于点的聚类因子和计算结果数据,包括聚类点的编号(GID)、疫情扰动下出行恢复的速度(25rate)和幅度(29rate),以及聚类的类型结果(Kmeans_clu)。(2)出行韧性的核密度值。该数据集存储为.shp和.tif格式,由47个数据文件组成,数据量为5.32 MB(压缩为1个文件,1.01 MB)。 Travel resilience refers to the process of restoring residents’travel to the original state of balance between supply and demand or establishing a new equilibrium state after experiencing negative disturbances.It characterizes the interactions between residents’travel,disturbances,urban space,and transportation systems in terms of process,continuity,and dynamics.The key measurement of travel resilience lies in the ability of transportation demand to recover to pre-disturbance levels or achieve a stable state during long-term coupling with a disturbance.Using the K-means clustering method and cell phone signaling data from Beijing between February and September 2020,the authors calculated a spatial differentiation dataset of travel resilience within Beijing’s Sixth Ring Road.The dataset includes(1)cluster factors and resulting data in points,including the unique identification ID for each 250 m grid(GID),travel recovery speed(25rate)and magnitude(29rate)under the epidemic disturbance,clustering results indicating travel toughness(Kmeans_clu),and(2)kernel density values with 250-m resolution.This dataset was archived in a previous study.shp and.tif formats and consists of 47 data files with a data size of 5.32 MB(compressed to one file of 1.01 MB).
作者 范文颖 王姣娥 黄洁 Fan,W.Y.;Huang,J.;Wang,J.E.(Institute of Geographic Sciences and Natural Resources Research&Key Laboratory of Regional Sustainable Development Modeling,Chinese Academy of Sciences,Beijing 100101,China;College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《全球变化数据学报(中英文)》 CSCD 2023年第4期391-398,V0391-V0398,共16页 Journal of Global Change Data & Discovery
基金 国家自然科学基金(42225106,42121001) 中国科学院青年创新促进会(2021049)。
关键词 出行 新冠疫情 手机信令数据 韧性 聚类分析 travel COVID-19 pandemic mobile signaling data resilience clustering analysis
  • 相关文献

参考文献15

二级参考文献207

共引文献800

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部