摘要
称子群A为群G的CAP_(S_(p)^(*))-子群,若G的任意pd-主因子H/K满足AH=AK或|A∩H:A∩K|p≤p.该文探究极大子群、二极大子群以及Sylow子群的CAP_(S_(p)^(*))性质对群的主因子结构的影响,并给出相关的刻画.
A subgroup A is called a CAP_(S_(p)^(*))-subgroup of a finite group G,if for any pd-chief factor H/K of G,we have either AH=AK or|A∩H:A∩K|p≤p.In this paper,the influence of the CAP_(S_(p)^(*))properties of maximal subgroups,second maximal subgroups and Sylow subgroups on the structure of chief factors of finite groups is explored,and the related characterizations are given.
作者
王鸿志
缪龙
刘威
WANG Hongzhi;MIAO Long;LIU Wei(College of Science,Hohai University,Nanjing 210098,China;School of Mathematical Sciences,Yangzhou University,Yangzhou 225002,Jiangsu,China)
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第3期304-309,共6页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金项目(11871062)
江苏省自然科学基金项目(BK20181451)
中俄国际合作项目NSFC-RFBR(12011530061).