摘要
利用子群的几乎m-嵌入性质重新刻画了p-幂零群和UΦ-超中心。以几乎m-嵌入准素子群为研究对象,采用局部化处理方法,将几乎m-嵌入准素子群分别局部化到Sylow p-子群的正规化子中和广义Fitting子群中开展研究。得到了一个刻画p-幂零群的充分条件及3个描述UΦ-超中心结构的3个充分条件。所得结论丰富了研究p-幂零群和UΦ-超中心结构的手段。
p-nilpotent groups and UΦ-hypercentre were investigated by using nearly m-embedded property of subgroups.Nearly m-embedded primary subgroups was took as the research object and localized to the normalizer of Sylow p-subgroups and the generalized Fitting subgroup respectively by adopting localization method.A sufficient condition of p-nilpotent groups and three sufficient conditions on the construction of UΦ-hypercentre were obtained.The researching methods on the structure of p-nilpotent groups and UΦ-hypercentre were enriched by the obtained results above.
作者
高百俊
张佳
缪龙
GAO Baijun;ZHANG Jia;MIAO Long(School of Mathematical Science,Yangzhou University,Yangzhou 225002,China;School of Mathematics and Statistics,Yili Normal University,Yining 835000,China;School of Mathematics and Information,China West Normal University,Nanchong 637009,China)
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第2期265-268,共4页
Journal of Northwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(11871062)
新疆维吾尔自治区高校科研项目(XJEDU2017M034)
西华师范大学博士科研启动项目(17E091)。