摘要
为研究屈曲约束支撑(buckling-restrained brace,BRB)及其体系在高温工况的抗震性能,对BRB芯材低屈服点LYP160钢材分别进行了常温和高温材料力学性能试验.通过与试验结果比较,建立了BRB热-力耦合精细化有限元分析模型,验证了该模型的准确性;对火灾下LYP160屈曲约束支撑的温度场、滞回曲线、骨架曲线和耗能能力等性能进行了对比分析;对不同工况(3种火灾工况和常温工况)下8层配置屈曲约束支撑钢框架(BRB structure,BS)和原结构(original structure,OS)分别进行了弹塑性动力时程分析.研究结果表明:3种火灾工况下BS的平均层间位移角较于OS分别降低了30.4%、33.2%和42%;OS柱塑性铰损坏严重,且更多出现在柱上,BS整体损坏程度较OS轻,更为安全可靠.
To study the seismic performance of buckling-restrained braces(BRBs)and the corresponding system at high temperatures(i.e.,concerning fire),the mechanical properties of the BRB core material were tested at room and high temperatures.Considering the test results,a refined thermomechanical coupling finite element model of a BRB was established and the accuracy of the model was verified.Additionally,the performance of temperature field,hysteretic curves,skeleton curves,and energy dissipation capacity of an LYP160 BRB under conditions resembling fire were compared and evaluated.Elasto plastic dynamic time analyses were separately conducted regarding a BRB with an 8-story steel frame structure(labeled as BS)and the original structure(OS)under various conditions:three hightemperature ranges(like fire)and room temperature.The results showed that the average inter-story drifts of the BS under the three heat conditions were 30.4%,33.2%,and 42%lower than that of the OS.There are severe damage of plastic hinges on the OS,more occurring in the column,while the overall damage of BS was less severe.Thus,the BS is safer and more stable than the OS.
作者
何文福
李志威
胡宝琳
胡吴彪
丁振坤
田华
HE Wenfu;LI Zhiwei;HU Baolin;HU Wubiao;DING Zhenkun;TIAN Hua(School of Mechanics and Engineering Science,Shanghai University,Shanghai 200444,China;Shanghai Nuclear Engineering Research and Design Institute Co.,Ltd.,Shanghai 200233,China)
出处
《上海大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第2期318-331,共14页
Journal of Shanghai University:Natural Science Edition
基金
国家自然科学基金资助项目(52078287)
国家科技重大专项(2018ZX06001001)
广西重点研发计划(桂科AB19259011)。
关键词
屈曲约束支撑
低屈服点钢
火灾
有限元
抗震性能
buckling-restrained brace
low-yield-point steel
fire
finite element
seismic performance