摘要
为准确预测黄河引水隧洞安全隐患,提出基于模糊集理论和主观贝叶斯方法的模糊贝叶斯安全评价模型。结合实际巡检数据,模型使用贝叶斯网络处理模糊信息与不确定信息,将巡检数据中给出的多态性故障事件模糊化;再通过贝叶斯网络的条件概率表找出不同故障事件之间的逻辑关系;最后获得对引水隧洞安全模型的整体评价。通过开展引水隧洞安全评价模型实例分析,验证了该方法的可行性。
In order to accurately predict the potential safety hazards of the Yellow River diversion tunnel,a fuzzy Bayesian safety evaluation model based on fuzzy set theory and subjective Bayesian method is proposed.Combined with the actual inspection data,this model uses Bayesian Network(BN)to process fuzzy information and uncertain information,fuzzies polymorphic fault events from the inspection data,and then finds out logical relationship among different fault events through conditional probability table of Bayesian network.Finally,the overall evaluation of the headrace tunnel safety model is obtained,and the feasibility of this method is verified by example analysis of the headrace tunnel safety evaluation model.
作者
皮明
杨涛
张良
田华平
黄山河
PI Ming;YANG Tao;ZHANG Liang;TIAN Huaping;HUANG Shanhe(School of Information Engineering,Southwest University of Science and Technology,Mianyang Sichuan 621010,China)
出处
《太赫兹科学与电子信息学报》
2024年第5期558-564,共7页
Journal of Terahertz Science and Electronic Information Technology
基金
国家重点研发计划子课题资助项目(2019YFB1310504)
西南科技大学博士基金资助项目(21zx7142)。
关键词
模糊集理论
主观贝叶斯理论
不确定性
引水隧洞安全评价模型
fuzzy set theory
subjective Bayesian theory
uncertainty
safety evaluation model of headrace tunnel