期刊文献+

全电高速无人直升机电池风冷散热能力研究

Research on Air-cooling Effectiveness for the Battery of Electric High-speed Unmanned Helicopter
下载PDF
导出
摘要 全电高速无人直升机存在电池功率大、内部空间小等特点,对内部电池的散热能力提出了更高的要求。为研究全电高速无人直升机内部电池模组的散热性能,本文首先利用计算流体力学(CFD)计算不同通风口布置形式下全电高速无人直升机各通风口的流动特性、进气量和阻力;随后基于外流场的计算结果,计算全电高速无人直升机机舱内各电池模组在直升机前飞和悬停状态下的表面散热能力和舱内流场,并分析表面散热能力随进气口格栅下偏角度的变化。计算结果表明,在舱内气流速度和湍流度的共同作用下,直升机舱内上、下层设备舱内电池模组在前飞和悬停状态下呈现不同的变化规律;最后基于各电池模组表面散热能力随进气口格栅下偏角度的变化规律,得出下层通风口进气格栅下偏80°,上层通风口进气格栅下偏20°时,舱内电池模组散热能力最强,为全电高速无人直升机风冷散热方案提供参考依据。 Electric unmanned helicopter need better heat dissipation on account of high battery power and small internal space.The objective of this paper is to optimize heat dissipation performance.CFD was used to calculate the air intake and flow characteristics of various air inlet in the infinite flow field.Based on the above results,the surface heat dissipation performance and the cabin flow field in forward flight and hovering were calculated,and the variation of surface heat dissipation performance with the deflection angle of air inlet flow was analyzed.Under the combined action of the cabin airflow velocity and turbulence,the heat dissipation performance of the battery pack in upper and lower equipment compartment presents different rules.Based on the calculation,the surface heat dissipation performance is the strongest when the deflection angle of upper air inlet flow is 20°and the deflection angle of lower air inlet flow is 80°.
作者 周琪琛 李春华 张威 赵悦 侯瑞 Zhou Qichen;Li Chunhua;Zhang Wei;Zhao Yue;Hou Rui(China Helicopter Research and Development Institute,Jingdezhen 333001,China)
出处 《航空科学技术》 2024年第4期83-89,共7页 Aeronautical Science & Technology
关键词 全电高速 无人直升机 计算流体力学 电池 表面散热能力 electric high-speed unmanned helicopter CFD battery heat dissipation performance
  • 相关文献

参考文献3

二级参考文献14

  • 1潘宏斌,赵家宏,冯夏至,曹广永,胡俊伟,葛建生.仿真分析技术在镍氢电池模组结构优化设计中的应用[J].机械工程学报,2005,41(12):58-61. 被引量:19
  • 2Kiziel R, Lateef A, Sabbah R, et aI. Passive control of tem- perature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature [J]. Journal of Power Sources, 2008,183 (1) : 370-375. 被引量:1
  • 3Taymaz I. An experimental study of energy balance in low heat rejection diesel engine [J]. Energy, 2006, 31 (2/3) : 364-371. 被引量:1
  • 4Takabayashi T. Effects of the solar reduction glass on the car occupant thermal comfort by a numerical simulation [R]. SAE Paper 012791,2003. 被引量:1
  • 5Bipin L,Sandeep S,Bahram K. Simulation of the flow-field around a generic tractor-trailer truck [R]. SAE Paper 2004-01-1147,2004. 被引量:1
  • 6Kent E,Michael P, Thomas G. Ford GT-automobile aero- dynamics updating a legend[R]. SAE Paper 2004-01-1254, 2004. 被引量:1
  • 7Luca A, Vincenzo M, Pier P. A CFD-FEM approach to study wing aerodynamics under deformation[R]. SAE Pa- per 2004-01-04,2004. 被引量:1
  • 8Basara B,Przulj V,Tibaut P. On the calculation of external areodynamics[R]. SAE Paper 2001-01-070,2001. 被引量:1
  • 9Rami S,Kizilel R,Selman J R,et al. Active vs passive ther- mal management of high power lithium-ion packs:limita-tion of temperature rise and uniformity of temperature dis- tribution[J]. Journal of Power Sources, 2008, 182 (2): 630-638. 被引量:1
  • 10Paul N,Dennis D, Khalil A, et al. Modeling thermal man- agement of lithium-ion PNGV batteries[J]. Journal ofPower Sources, 2002,110 (2) : 349-356. 被引量:1

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部