摘要
通过计算与推导,得到了n维完备黎曼流形上椭圆方程Δ_(g)u+au^(q)(ln u)^(p)+bu=0正解的梯度估计,其不依赖于解的界和距离函数的拉普拉斯(Laplace)算子;将文献[1]中对正调和函数的梯度估计推广到更一般的情形;将文献[10]中对一类椭圆方程正解的梯度估计进行了拓展,得到了更具一般性的结果.
In this paper,we obtain the gradient estimates of the positive solutions to the following equation defined on an n-dimensional complete Riemannian manifoldΔ_(g)u+au^(q)(ln u)^(p)+bu=0.The gradient bound does not depend on the bounds of the solution and the Laplacian of the distance function.Our result is an extension of the estimates on positive harmonic function[1]and the estimates of solutions to some nonlinear elliptic equation[10].
作者
朱秋阳
张伟
ZHU Qiuyang;ZHANG Wei(Beijing Technology and Business University,School of Mathematics and Statistics,Beijing,China)
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第2期161-168,共8页
Journal of Beijing Normal University(Natural Science)
基金
国家自然科学基金资助项目(11901018,12071017)。