期刊文献+

一类椭圆方程的梯度估计

Gradient estimates for some elliptic equation
下载PDF
导出
摘要 通过计算与推导,得到了n维完备黎曼流形上椭圆方程Δ_(g)u+au^(q)(ln u)^(p)+bu=0正解的梯度估计,其不依赖于解的界和距离函数的拉普拉斯(Laplace)算子;将文献[1]中对正调和函数的梯度估计推广到更一般的情形;将文献[10]中对一类椭圆方程正解的梯度估计进行了拓展,得到了更具一般性的结果. In this paper,we obtain the gradient estimates of the positive solutions to the following equation defined on an n-dimensional complete Riemannian manifoldΔ_(g)u+au^(q)(ln u)^(p)+bu=0.The gradient bound does not depend on the bounds of the solution and the Laplacian of the distance function.Our result is an extension of the estimates on positive harmonic function[1]and the estimates of solutions to some nonlinear elliptic equation[10].
作者 朱秋阳 张伟 ZHU Qiuyang;ZHANG Wei(Beijing Technology and Business University,School of Mathematics and Statistics,Beijing,China)
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期161-168,共8页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(11901018,12071017)。
关键词 椭圆方程 梯度估计 HARNACK不等式 RICCI曲率 极值原理 elliptic equation gradient estimate Harnack inequality Ricci curvature maximum principle
  • 相关文献

参考文献1

二级参考文献14

  • 1Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math., 34, 525-598 (1981). 被引量:1
  • 2Li, P., Yau, S. T.: On the parabolic kernel of the Schrodinger operator. Acta Math., 156, 153-201 (1986). 被引量:1
  • 3Li, J.: Graclient estimates and Harnack inequalities for nonlinear parabolic and nonlinear'elliptic equations on Riemannian manifolds. J. Funct Anal., 100, 233-256 (1991). 被引量:1
  • 4Negrin, E.: Gradient estimates and a Liouville type theorem for the Schrodinger operator. J. Funet. Anal., 127, 198-203 (1995). 被引量:1
  • 5Melas, A.: A Liouville type theorem for the Schrodinger operator. Proc. Amer. Math. Soc., 127, 3353-3359 (1999). 被引量:1
  • 6Asserda, S.: A Liouville theorem for the Schrodinger operator with drift. C. R. Acad. Sci. Paris, Ser. I, 342, 393 398 (2006). 被引量:1
  • 7Gui, C., Lin, F.: Regularity of an elliptic problem with a singular nonlinearity. Proc. Roy. Soc. Edinburgh, Sec. A, 123, 1021-1029 (1993). 被引量:1
  • 8Guo, Z., Wei, J.: Hausdoff dimension of ruptures for solutions of a semilinear equation with singular nonlinearity. Manuscripta Math., 120, 193-209 (2006). 被引量:1
  • 9Gilbarg, D,, Trudinger,- N.: Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001. 被引量:1
  • 10Yau, S. T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math., 28, 201-228 (1975). 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部