摘要
主要研究了一类带有竞争机制的非线性捕食者-食饵模型.通过对试验函数φ(w)的精细构造,对加权积分∫_(Ω)u^(p)φ(w)和∫_(Ω)v^(p)φ(w)的计算,可以得到u和v在L^(p)(Ω)中对任何有限p的有界性.并通过Moser-Alikakos迭代技巧,成功证明在某种参数条件下该模型具有全局有界经典解.
In this study,we focus on analyzing a nonlinear predator-prey model incorporating a competitive mechanism.Through the meticulous construction of the test functionφ(w)and the calculation of the weighted integrals∫_(Ω)u^(p)φ(w)and∫_(Ω)v^(p)φ(w),we establish the L^(p)(Ω)boundedness of both variables u and v.Utilizing a Moser-Alikakhos-type iterative approach,we effectively demonstrate the existence of a globally bounded classical solution for the model under given specific parameter constraints.
作者
赵司军
王辉
ZHAO Sijun;WANG Hui(School of Mathematics and Statistics,Yili Normal University,Yining 835000,China;Institute of Applied Mathematics,Yili Normal University,Yining 835000,China)
出处
《长春师范大学学报》
2024年第4期14-18,53,共6页
Journal of Changchun Normal University
基金
伊犁师范大学科研项目“退化发展型方程整体解的研究”(2021SYSB077)。
关键词
捕食者-食饵模型
加权积分
全局有界性
竞争
predator-prey model
weighted integral
global boundedness
competition