期刊文献+

星载海洋剖面多要素探测技术与系统研究

Research on multi-element detection technology and system for spaceborne ocean profile
下载PDF
导出
摘要 海洋立体结构信息是未来实现海洋透明与海洋强国的基础,针对海洋剖面探测能力不足的问题,以及星载海洋剖面多要素同源同域一体化探测空白,开展星载海洋剖面多要素探测技术与系统方案研究,提出新型激光主被动复合、能谱复用探测技术体制,面向未来星载应用,完成星载海洋剖面多要素探测载荷系统设计。其中,激光器谱段设计为486、532 nm多波长一体化最佳配比输出,光电接收探测系统选用1 m×5 m超大口径可折叠光栅主镜,经过仿真分析,探测系统可实现大洋水深100 m深度、温度、盐度以及后向散射系数等多要素同源探测能力,同等体积包络条件下,能量收集能力提升5倍。 Objective The development of marine ecology,marine science,and marine economy is inseparable from marine observation data,and the requirements for marine data have developed from sea surface data to ocean profile data.Ocean profiling is an important basis and means to study the three-dimensional profile distribution of global ocean optical and biological parameters,as well as ocean carbon and energy cycles.At present,ocean profile elements(temperature,salinity,optical parameters,etc.)mainly rely on in-situ detection and airborne detection,and the lack of global-scale,high-efficiency,and high-precision remote sensing observation methods has become a bottleneck problem for comprehensive understanding and fine perception of the ocean.At present,the traditional multi-payload cooperative observation or satellite-ground linkage observation mode can obtain multi-element information in time and region,but the integrated detection of temperature,salinity and depth in the ocean profile is still blank,and the inversion of non-homologous,non-homogeneous and non-simultaneous detection data of underwater optical biological parameters and physicochemical parameters is consistent and accurate,which cannot effectively obtain the three-dimensional structure of the ocean to meet the needs of scientific research.Methods An active and passive composite optical remote sensing system for multi-element detection of ocean profile is proposed,as shown in Figure 1.Based on the lidar equation calculation,the application indicators of the decomposition system,such as depth,backscatter measurement error,temperature,salinity error,etc.,are calculated and calculated,and the energy,line width,optical system aperture,focal length,field of view,detector selection of the optical system of photoelectric reception and detection are confirmed through simulation analysis and calculation,as shown in Table 3.The grating primary mirror realizes the compression of light,and the diameter-thickness ratio of ULE material is 200∶1 to realize the lightweight
作者 孙倩 沈振民 杨颂 王子豪 王元庆 梁琨 尚卫东 王培培 俞越 赵号 吕红 刘正坤 郑永超 Sun Qian;Shen Zhenmin;Yang Song;Wang Zihao;Wang Yuanqing;Liang Kun;Shang Weidong;Wang Peipei;Yu Yue;Zhao Hao;Lv Hong;Liu Zhengkun;Zheng Yongchao(Beijing Institute of Space Mechanics&Electricity,Beijing 100094,China;Key Laboratory for Space Laser Information Perception Technology,China Academy of Space Technology,Beijing 100094,China;School of Electronic Information and Communications,Huazhong University of Science and Technology,Wuhan 430074,China;National Synchrotron Radiation Laboratory,University of Science and Technology of China,Hefei 230029,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2024年第1期236-248,共13页 Infrared and Laser Engineering
基金 国家自然科学基金项目(62105240,62075159) 国家重点研发计划项目(2019YFB2203002)。
关键词 激光雷达 海洋剖面探测 主被动复合 大口径光栅 lidar ocean profile detection active and passive composite large aperture grating
  • 相关文献

参考文献5

二级参考文献48

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部