摘要
针对白骨顶鸡算法求解工程问题时收敛速度慢,易陷入局部最优等不足,提出一种基于拉丁超立方体的改进白骨顶鸡算法。使用拉丁超立方体抽样增强初始种群的均匀性和多样性;引入非线性决策因子和自适应动态边界机制,提高算法全局搜索和局部开发能力;利用柯西变异对最优解进行扰动,帮助算法跳出局部最优。在16个基准函数、高维函数和工程问题进行仿真,其结果验证,该算法收敛速度和寻优精度良好,在工程问题上具有可行性和有效性。
Aiming at the shortcomings of the COOT algorithm that it has low convergence speed and is easy to fall into local optimization when solving engineering problems,an improved COOT algorithm based on Latin Hypercube was proposed.Latin Hypercube sampling was used to enhance the uniformity and diversity of the initial population.Nonlinear decision factors and adaptive dynamic boundary mechanisms were introduced to improve global search and local development capabilities.Cauchy variation was used to perturb the optimal solution to help the algorithm jump out of the local optimum.Through experimental simulation of 16 benchmark functions,high-dimensional functions and engineering problems,the simulation results show that the algorithm convergence speed and optimization accuracy are good,and it is feasible and effective in engineering problems.
作者
何星月
张靖
覃涛
何必涛
杨靖
HE Xing-yue;ZHANG Jing;QIN Tao;HE Bi-tao;YANG Jing(Electrical Engineering College,Guizhou University,Guiyang 550025,China;Guizhou Engineering Limited Co.,Ltd,China Power Construction Group,Guiyang 550025,China)
出处
《计算机工程与设计》
北大核心
2024年第4期1069-1078,共10页
Computer Engineering and Design
基金
国家自然科学基金项目(61640014)
贵州省教育厅创新群体基金项目(黔教合KY字[2021]012)
贵州省教育厅工程研究中心基金项目(黔教技[2022]043)
贵州省科技支撑计划基金项目(黔科合支撑[2022]一般017,[2019]2152)
贵州省科技基金项目(黔科合基础[2020]1Y266)
物联网理论与应用案例库基金项目(KCALK201708)
贵阳市高新区平台基金项目([2015])。