期刊文献+

采用利希滕贝格图的高超声速飞行器轨迹优化

Hypersonic Flight Vehicle Trajectory Optimization Using Lichtenberg Figure
下载PDF
导出
摘要 针对复杂约束条件下高超声速飞行器再入轨迹优化问题,提出一种混合算法进行求解,以解决现有轨迹优化方法对初值的强依赖性以及易陷入局部最优等问题。将高超声速飞行器再入轨迹优化建模成一个非线性规划问题,并设计双层优化结构进行求解。上层中,提出一种基于利希滕贝格图的自适应分段利希滕贝格算法(Adaptive piecewise Lichtenberg algorithm,APLA),为高斯伪谱法提供良好的初值。APLA通过引入拉丁超立方体抽样提升算法初始触发点的效能,引入全局至局部搜索分段策略及自适应因子提高算法收敛速度和收敛精度,改善算法易陷入局部最优等情况。下层中,高斯伪谱法在最优解附近具有较好的收敛速度和较高收敛精度,因此使用高斯伪谱法以加快搜索过程,提升解的全局最优性。综上,提出再入轨迹优化混合算法(APLA_GPM),实现对高超声速飞行器再入轨迹优化问题快速、准确求解。仿真结果表明,APLA_GPM在高超声速飞行器再入轨迹优化方面具有更快的收敛速度、更高的精度以及更强的鲁棒性。 A hybrid algorithm is proposed to solve the re-entry trajectory optimization problem of hypersonic flight vehicle under complex constraints to solve the shortcomings of existing trajectory optimization methods,such as strong dependence on initial values and easy to fall into local optimality.The hypersonic re-entry trajectory optimization is modeled as a nonlinear programming problem,and a two-layer optimization structure is designed to solve it.In the initial stage,an adaptive piecewise Lichtenberg algorithm(APLA)based on the Lichtenberg figure is proposed to obtain a good initial solution for Gauss pseudospectral method(GPM).The efficiency of the initial trigger point of APLA is improved by introducing Latin hypercube sampling.The convergence speed and accuracy of the algorithm are improved and the situation that the algorithm is easy to fall into local optimization is improved by introducing global to local search piecewise strategy.GPM has better convergence speed and higher accuracy near the optimal solution,so in the final stage,it's used to speed up the search process and obtain the exact global optimal solution.In conclusion,a hybrid re-entry trajectory optimization algorithm(APLA_GPM)is proposed to solve the hypersonic re-entry trajectory optimization problem faster and more accurately.Simulation results show that the proposed algorithm has a faster convergence speed,higher accuracy,and stronger robustness for hypersonic vehicle re-entry trajectory optimization.
作者 张笑妍 程昊宇 韩博 闫杰 ZHANG Xiaoyan;CHENG Haoyu;HAN Bo;YAN Jie(Unmanned System Research Institute,Northwestern Polytechnical University,Xi’an 710072,China;People’s Liberation Army Unit 93525,Shigatse 857000,China)
出处 《宇航学报》 EI CAS CSCD 北大核心 2024年第2期181-191,共11页 Journal of Astronautics
关键词 高超声速飞行器 再入轨迹优化 利希滕贝格算法 高斯伪谱法 Hypersonic flight vehicles Re-entry trajectory optimization Lichtenberg algorithm Gauss pseudospectral method
  • 相关文献

参考文献9

二级参考文献53

  • 1高阳,吴文海,张杨.非对称输入饱和下的非仿射不确定系统自抗扰反演控制[J].控制与决策,2020,35(4):885-892. 被引量:5
  • 2汪定伟,王俊伟,汪洪峰,张瑞友,郭哲.智能优化算法[M].北京:高等教育出版社,2007:26-40. 被引量:42
  • 3Shibata M, Ichikawa A. Orbital rendezvous and flyaround based on null controllability with vanishing energy [ ] ]. Journal of Guidance, Control, and Dynamics, 2007, 30(4) :934 -945. 被引量:1
  • 4Sultan C, Seereeram S, Mehra R K. Minimization and equalization of energy for formation flying reconfiguration[ C]. IEEE Internatianal Conference on Robotics & Automation, Woburn, MA, USA, April 26-May 1, 2004. 被引量:1
  • 5Dyer J D, Hartifield R J, Dozier G V. Aerospace design optimization using a steady state real-coded genetic algorithm [ J]. Applied Mathematics and Computation, 2012, 218 (9) : 4710 - 4730. 被引量:1
  • 6James K, Russell E. Particle swarm optimization[ C]. The 1995 IEEE International Conference on Neural Networks, Washington, DC, USA, Nov 27- Dec 1, 1995. 被引量:1
  • 7Chandeok P, Vincent G, Daniel J S. Solving optimal continuous thrust rendezvous problems with generating functions [ J ]. Journal of Guidance, Control, and Dynamics, 2006, 29 (2): 321 - 331. 被引量:1
  • 8Satoshi K, Koetsu Y, Masao A. Adaptive range particle swarm optimization [ J ]. Optimization and Engineering, 2009, 10 ( 4 ) : 575 - 597. 被引量:1
  • 9Bayrak A E, Polat F. Employment of an evolutionary heuristic to solve the target allocation problem efficiently [ J ]. Information Sci- ences, 2013, 222:675-695. 被引量:1
  • 10Tokgoz A, Bulkan S. Weapon target assignment with combinatorial optimization techniques[J]. International Journal of Advanced Re- search in Artificial Intelligence, 2013, 2 (7) : 39 -50. 被引量:1

共引文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部