期刊文献+

面向大语言模型的青少年人工智能教育 被引量:1

AI Education for Young Learners with a Focus on Large Language Models
下载PDF
导出
摘要 大语言模型(LLM)作为一种先进的AI技术,正对人类生活产生深远影响。与传统AI技术相比,LLM能够处理大量的文本数据,并在自然语言处理等领域发挥着巨大作用。LLM的快速发展与应用推进已经对AI教育的课程内容、教学模式与学习平台产生了显著的影响,这些影响也迫切要求青少年AI教育课程与时俱进的变革。为应对这种变革,该研究从课程内容框架、基于LLM的教学模式以及LLM辅助学习平台三个维度设计了一个面向LLM的青少年AI课程架构,并以教学活动设计为切入点,深入探讨了如何使该课程架构与学科核心素养紧密契合。基于此架构,设计并开发了一门高中LLM示范课程,重点展示了如何利用自主开发平台(LLM 4 Kids)进行人机协同教学。选取了示范课程中《面向LLM的提示与评估》的单元内容,解释了如何在教学过程中有效的应用和整合LLM技术。通过提供面向LLM的青少年AI课程架构以及解释案例,为AI教育实践者提供面向LLM的框架体系与课程参考,推动最新的人工智能前沿知识进入中小学课堂,从而有助于青少年适应AI快速发展的时代。 Large Language Models(LLMs),as cutting-edge AI technologies,are having a profound impact on human life,which is excel in handling vast volumes of text data and play a significant role in natural language processing,compared to traditional AI.The rapid advancement of LLMs has noticeably influenced AI education in terms of curriculum content,teaching methodologies,and learning platforms.This change necessitates the modernization of AI education for young students.Addressing this need,the study develops a youth AI curriculum framework targeting LLMs,encompassing content structure,LLM-based teaching strategies,and an LLM-aided learning platform.Moreover,it dives into how to align this curriculum closely with disciplinary core literacy through innovative instructional design.Using this framework,a high school LLM demonstration course was designed and developed,with a focus on showcasing human-computer collaborative learning through a proprietary platform named LLM 4 Kids.An exemplary unit from the course,titled Prompting and Evaluating with LLMs,illustrates the effective application and integration of LLM technologies in teaching.By offering an LLM-focused AI curriculum framework for youth,alongside an illustrative case,this study provides AI educators with a structural guide and practical insights,facilitating the introduction of large language model into primary and secondary education.This endeavor is instrumental in preparing young students for the fast-paced evolution of AI.
作者 褚乐阳 王浩 陈向东 Chu Leyang;Wang Hao;Chen Xiangdong(Department of Educational Information Technology,East China Normal University,Shanghai 200062)
出处 《中国电化教育》 北大核心 2024年第4期32-44,共13页 China Educational Technology
基金 全国教育科学规划一般课题“基于大语言模型的青少年人工智能教育研究”(课题编号:BCA230276)阶段性研究成果。
关键词 大语言模型 人工智能课程 人机协同 LLM 4 Kids Large Language Models AI curriculum human-computer collaboration LLM 4 Kids
  • 相关文献

参考文献7

二级参考文献43

共引文献206

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部