期刊文献+

基于干扰观测器的四旋翼无人机终端滑模控制方法

Terminal Sliding Mode Control method for quadrotor UAV based on disturbance observer
下载PDF
导出
摘要 针对四旋翼无人机存在外部干扰的问题,提出了一种基于非线性干扰观测器的非奇异终端滑模控制策略,以保证系统的安全性和可靠性。首先,建立考虑外部干扰的四旋翼无人机动力学模型;其次,设计一种非线性干扰观测器来估计外部干扰的实际值,并结合非奇异终端滑模与反演技术,确保位置和姿态系统能在有限时间内收敛于期望轨迹;最后,通过仿真对比实验,表明所提出的控制方法具有良好的跟踪性能和抗干扰能力,并且其稳定性和鲁棒性均优于传统的滑模控制方法。 A Non-singular Terminal Sliding Mode Control(NTSMC)strategy based on a non-linear disturbance observer is proposed for addressing the quadrotor UAV with external disturbances,ensuring the safety and reliability of the system.Firstly,the quadrotor UAV dynamics model considering external disturbance is established.Secondly,a nonlinear disturbance observer is designed to estimate the actual value of the external disturbance and combined with the non-singular terminal sliding mode with a backstepping technique to ensure that the position and attitude system can converge to the desired trajectory in a finite time.Finally,the simulation and comparison experiments show that the proposed control method has good tracking performance and anti-disturbance ability,and its stability and robustness are better than the traditional Sliding Mode Control(SMC)method.
作者 陈宝玉 CHEN Baoyu(Phoenix Contact,Nanjing 210000,China)
出处 《计算机应用文摘》 2024年第7期90-97,100,共9页 Chinese Journal of Computer Application
关键词 四旋翼无人机 非线性观测器 滑模控制 非奇异终端滑模 欠驱动系统 quadrotor UAV nonlinear disturbance observer Sliding Mode Control nonsingular terminal sliding mode underactuated system
  • 相关文献

参考文献2

二级参考文献14

  • 1Slotine J J E, Li W. Applied nonlinear control[M]. NJ: Prentice-Hall Englewood Cliffs, 1991: 290-301. 被引量:1
  • 2Levant A. Universal single-input-single-output(SISO) sliding-mode controllers with finite-time convergence[J]. IEEE Trans on Automatic Control, 2001, 46(9): 1447-1451. 被引量:1
  • 3Laghrouche S, Plestan F, Glumineau A. Higher order sliding mode control based on integral sliding mode[J]. Automatica, 2007, 43(3): 531-537. 被引量:1
  • 4Defoort M, Floquet T, Kokosy A, et al. A novel higher order sliding mode control scheme[J]. Systems & Control Letters, 2009, 58(2): 102-108. 被引量:1
  • 5Siraramirez H. On the dynamic sliding mode control of nonlinear systems[J]. Int J of Control, 1993, 57(5): 1039-1061. 被引量:1
  • 6Yu S H, Yu X H, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11): 1957-1964. 被引量:1
  • 7Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Trans on Automatic Control, 2012, 57(8): 2106-2110. 被引量:1
  • 8Polyakov A, Fridman L. Stability notions and Lyapunov functions for sliding mode control systems[J]. J of the Franklin Institute-Engineering and Applied Mathematics, 2014, 351(4): 1831-1865. 被引量:1
  • 9Yang L, Yang J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. Int J of Robust and Nonlinear Control, 2011, 21(16): 1865-1879. 被引量:1
  • 10Abramowitz M, Stegun I A. Handbook of mathematical functions: With formulas, graphs, and mathematical tables[M]. New York: Courier Dover Publications, 1972: 556-557. 被引量:1

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部