期刊文献+

一种时变非奇异快速终端滑模控制算法 被引量:2

A Novel Time-Varying Nonsingular Fast Terminal Sliding Mode Control Scheme
原文传递
导出
摘要 针对非奇异快速终端滑模在趋近阶段收敛速率较慢的问题,提出一种时变非奇异快速终端滑模控制算法,提高了系统收敛速率.首先,提出一种时变非奇异快速终端滑模,使系统在滑动阶段能有限时间收敛到平衡点,并在趋近阶段保持较快的收敛速率.同时,提出一种新型双幂次趋近律,使其与经典双幂次趋近律相比具有更好的运动品质,同时改善系统鲁棒性.根据设计的滑模和趋近律提出一种时变非奇异快速终端滑模控制算法.通过Lyapunov理论证明:当系统扰动为0时,系统能实现有限时间收敛到平衡点;当系统扰动不为0时,系统滑模和其导数能有限时间收敛到一个剩余集,提高了系统控制精度.通过Matlab仿真表明,与传统非奇异快速终端滑模控制算法相比,该方法能有效提高系统收敛速率和控制精度,改善鲁棒性. In order to improve convergent rate of conventional non-singular fast terminal sliding mode (NFTSM) control in reaching phase, a time-varying non-singular fast terminal sliding mode (TVNFTSM) control scheme is proposed so as to enhance convergence of systems. Firstly, a TVNFTSM structure is proposed to achieve finite-time convergence in sliding phase and faster convergence in reaching phase. Also, a new double power reaching law is designed and further improves convergence and robustness in comparison with classical double power reaching law. By applying Lyapunov theory, it can be proved that system can achieve finite-time stability without perturbation and sliding mode and its derivation can converge to a small residual set in finite time with perturbation, respectively. Finally, the simulation results verify that the faster convergence rate, higher control precision and stronger robustness can be achieved in comparison with the conventional NFTSM control scheme.
作者 张贝贝 赵东亚 高守礼 ZHANG Beibei;ZHAO Dongya;GAO Shouli(College of Chemical Engineer,China University of Petroleum,Qingdao 266580)
出处 《系统科学与数学》 CSCD 北大核心 2018年第11期1240-1251,共12页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61473312)资助课题
关键词 时变快速非奇异终端滑模 双幂次趋近律 鲁棒性 剩余集 Time-varying non-singular fast terminal sliding mode double power reaching law robustness residual set.
  • 相关文献

参考文献5

二级参考文献76

  • 1刘金琨.机器人控制系统的设计与MATLAB仿真.北京:清华大学出版社,2008:193-194. 被引量:3
  • 2Utkin V, Guldner J, Shi J X. Sliding mode control in electromechanicaI systems[M]. 2nd ed. London: Taylor & Francis,1999. 被引量:1
  • 3Hirschorn R. Sliding-mode control variations[J]. IEEE Transactions on Automatic Control, 2007,52 (3) : 468-480. 被引量:1
  • 4Chen M S, Chen C H,Yang F Y. An LTR-observer- based dynamic sliding mode control {or chattering reduction[J]. Automatica, 2007,43 (6) : 1111-1116. 被引量:1
  • 5Slotine J J, Sastry S S. Tracking control of non-linear systems using sliding surfaces with application to robot manipulator [C] // Proceedings of the 1983 IEEE American Control Conference, June 22-24, 1983, San Francisco, CA, USA. Piscataway: IEEE Press, 1983: 132-135. 被引量:1
  • 6Burton J A,Zinober A S I. Continuous approximation of variable structure control [J]. International Journal of Systems Science, 1986,17 (6) : 875-885. 被引量:1
  • 7Chung S C Y,Lin C L L. A transformed lure problem for sliding mode control and chattering reduetion[J]. IEEE Transactions on Automatic Control, 1999,44 (3) ; 563-568. 被引量:1
  • 8Lu Y S,Chen J S. Design of a global sliding-mode controller for a motor drive with bounded control[J]. International Journal of Control, 1995,62(5) ; 1001-1019. 被引量:1
  • 9Hung J Y, Gao W B, Hung J C. Variable structure eontrol:a survey[J]. IEEE Transactions on Industrial Electronics, 1993,40 ( 1 ) : 2-22. 被引量:1
  • 10Fridman L,Levant A. Higher order sliding modes as the natural phenomena of control theory[A].Benevento,1994.302-309. 被引量:1

共引文献211

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部