摘要
针对多模态遥感图像匹配难的问题,本文提出了一种基于Log-Gabor滤波的高精度匹配方法。该方法采用由粗到细的多层级密集匹配框架,无须进行特征点检测,避开了多模态图像特征点检测重复率低的问题,能够提取大量高精度匹配点对。本文方法主要分为两步:首先,利用多尺度多角度Log-Gabor滤波器构建对图像间非线性辐射差异稳健的特征金字塔;然后,利用粗尺度的底层特征图进行密集模板匹配,提取大量粗粒度的特征匹配点对,在此基础上再利用特征金字塔,实现粗匹配点自下而上的逐层优化,完成高精度特征匹配点对的提取。同时,针对模板匹配滑窗运算效率不高的问题,提出了一种密集模板匹配的快速实现方式,有效减少了密集模板匹配的运算时间。本文使用多组不同模态的遥感图像进行试验,结果表明,本文方法能够克服图像间非线性辐射差异的影响,在正确匹配数目、匹配准确率与匹配精度上均优于现有多模态图像特征匹配方法。
A feature matching method based on Log-Gabor filtering is proposed to address the problem of high-precision matching for multimodal remote sensing images.The method adopts a multi-scale dense matching framework via a coarse-to-fine manner,which avoids the low repeatability problem of feature detectors in multimodal images and is able to extract a large number of accurate correspondences.The method consists of two main steps:first,a feature pyramid robust to non-linear radiometric differences between images is constructed using multi-scale multi-angle Log-Gabor filters;then,the coarse feature map is used for dense template matching to extract a large number of coarse feature correspondences;the feature pyramid is then used to achieve bottom-up refinement of coarse correspondences layer by layer.Furthermore,to address the problem of inefficient sliding window operation for template matching,a fast implementation method of dense template matching is proposed,which effectively reduces the running time of dense template matching.The results show that the proposed method can overcome the influence of non-linear radiation differences between images,and outperforms existing multimodal image feature matching methods in terms of the number of correct matches,matching accuracy and matching precision.
作者
曹帆之
石添鑫
韩开杨
汪璞
安玮
CAO Fanzhi;SHI Tianxin;HAN Kaiyang;WANG Pu;AN Wei(College of Electronic Science,National University of Defense Technology,Changsha 410000,China)
出处
《测绘学报》
EI
CSCD
北大核心
2024年第3期526-536,共11页
Acta Geodaetica et Cartographica Sinica