摘要
正交时序复用(OTSM)是一种适用于高速移动场景的低复杂度调制方法。然而,单一的波形设计方法难以满足多样化的应用需求和性能需求。因此,该文基于加权分数傅里叶变换(WFRFT)提出了加权分数沃尔什-哈达玛变换(WFRWHT),并提出了多维扩展的一体化的加权分数傅里叶变换-加权分数沃尔什哈达玛变换-正交时序复用(WFRFT-WFRWHT-OTSM)波形框架。通过对2维参数的灵活配置,该框架可退化为OTSM、正交时频空、混合载波、正交频分复用和单载波等波形,同时研究了采用高斯-赛德尔(GS)迭代均衡时一体化WFRFTWFRWHT-OTSM波形在时延-多普勒信道下的误码率(BER)性能以及峰均功率比(PAPR)性能。仿真结果表明,在不同时延-多普勒信道下,该框架可通过改变WFRFT和WFRWHT阶次实现更优的BER和PAPR性能。
Orthogonal Time Sequency Multiplexing(OTSM)is a low-complexity modulation method suitable for high-speed mobile scenarios.However,a single waveform design method is difficult to meet diverse application requirements and performance demands.Therefore,on basis of Weighted FRactional Fourier Transform(WFRFT),a Weighted FRactional Walsh-Hadamard Transform(WFRWHT)is proposed and an integrated WFRFT-WFRWHT-OTSM waveform framework based on multidimensional extensions is put forward.Through the flexible configuration of two-dimensional parameters,this framework can be degraded to different waveforms such as OTSM,orthogonal time-frequency-space,hybrid carrier,orthogonal frequency division multiplexing and single carrier.In addition,Bit Error Rate(BER)and Peak-to-Average Power Ratio(PAPR)performances of the integrated WFRFT-WFRWHT-OTSM framework over delay-Doppler channels are studied with Gauss-Seidel(GS)iteration equalization.Simulation results show that the proposed framework achieves better BER and PAPR performances through changing the order of WFRFT and WFRWHT over different delay-Doppler channels.
作者
王震铎
谭正锋
孙溶辰
WANG Zhenduo;TAN Zhengfeng;SUN Rongchen(School of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)
出处
《电子与信息学报》
EI
CAS
CSCD
北大核心
2024年第3期826-834,共9页
Journal of Electronics & Information Technology
基金
国家自然科学基金(62001138)
黑龙江省自然科学基金(LH2021F009)
中国博士后科学基金(2020M670885)。
关键词
加权分数沃尔什变换
加权分数傅里叶变换
正交时序复用
正交频分复用
高斯-赛德尔迭代均衡
Weighted FRactional Walsh-Hadamard Transform(WFRWHT)
Weighted FRactional Fourier Transform(WFRFT)
Orthogonal Time Sequency Multiplexing(OTSM)
Orthogonal Time Frequency Space(OTFS)
Gauss-Seidel(GS)iterative equalization