期刊文献+

基于WFRFT的抗衰落通信系统性能研究 被引量:6

Research in performance results for WFRFT-OFDM system
下载PDF
导出
摘要 在时间频率双选择衰落信道情况下,提出了一种对抗载波间干扰(ICI)和符号间干扰(ISI)的加权型分数阶傅里叶(weighted-type fractional Fourier transform,WFRFT)变换系统,分析了WFRFT变换系统性能,以及载波频率偏移对系统的影响。在复杂信道环境下,我们推导出WFRFT变换系统的信号干扰比公式,表明WFRFT变换系统受到的ICI干扰介于单载波和多载波系统之间。同时仿真分析了单载波系统、OFDM系统和WFRFT变换系统的误码率特性。仿真结果表明,当存在频偏时,最优分数阶变换系统性能明显优于单载波系统和OFDM系统。 In this paper, we analyzed the effects of carrier frequency offset for Weighted fractional Fourier transform (WFRFT) system under the time frequency fading channel. The expression of signal-to-interference ratio (SIR) due to inter-carrier interference (ICD and intersymbol interferenee (ISI) is derived and the bit error rate (BER) performance of the BPSK modulation scheme are simulated for single-carrier (SC), OFDM and WFRFT-OFDM systems respectively. Simulation results show that when carrier offset exists, the WFRFT system has superiority over both SC and OFDM systems after choosing an optimal fractional order by experiment.
出处 《电子测量技术》 2015年第11期143-147,共5页 Electronic Measurement Technology
关键词 加权型分数阶傅里叶变换 载波频率偏移 误码率 weighted-type fractional Fourier transform (WFRFT) carrier frequency offset (CFO) bit error rate (BER)
  • 相关文献

参考文献11

二级参考文献29

  • 1MENG XiangYi TAO Ran WANG Yue.Fractional Fourier domain analysis of decimation and interpolation[J].Science in China(Series F),2007,50(4):521-538. 被引量:15
  • 2NAMIAS V. The fractional order Fourier transform and its application to quantum mechanics[J]. Journal of Institute of Mathematic Application, 1980, 25: 241-265. 被引量:1
  • 3CANDAN C, OZAKTAS H M. The Discrete Fractional Fourier Transform[J]. IEEE Transactions on Signal Processing, 2000,48 : 1329- 1337. 被引量:1
  • 4OZAKTAS H M, ANKAN O, KUTAY A, et al. Digital Computation of the Fractional Fourier Transform [J].IEEE Transaction on Signal Processir g, 1996,44: 2141-2150. 被引量:1
  • 5SANTHANAM B, MCCLELLAN J H. The Discrete Rotational Fourier Transform[J]. IEEE Transactions on Signal Processing, 1996, 44: 994-998. 被引量:1
  • 6PEI S C, YEH M H, TSENG CH CH. Discrete Fractional Fourier Transform Based on Orthogonal Projections [J]. IEEE Transactions on Signal Processing, 1999,47 ; 1335-1348. 被引量:1
  • 7PEI S CH, DING J J. Closed-Form Discrete Fractional and Affine Fourier transform[J]. IEEE Transactions on Signal Processing, 2000, 48:1338-1353. 被引量:1
  • 8YEH M H,PEI S CH. A Method for the Discrete Fractional Fourier Transform Computation [J]. IEEE Transactions on Signal Processing, 2003,51 (3) :889-891. 被引量:1
  • 9Cariolaro G, Erseghe T, Kraniauskas P, et al. A unified framework for the fractional Fourier transforms. IEEE Trans Signal Process, 1998, 46:3206-3219. 被引量:1
  • 10Cariolaro C, Erseghe T, Kraniauskas P, et al. Multiplicity of fractional Fourier transforms and their relationships. IEEE Trans Signal Process, 2000, 48:227- 241. 被引量:1

共引文献57

同被引文献29

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部