期刊文献+

深度学习在胃组织病理诊断中的应用进展

Application progress of deep learning in pathological diagnosis for gastric tissues
下载PDF
导出
摘要 深度学习在组织病理中的应用主要包括对组织病理进行诊断和分级、评估生物标志物以及患者预后。为了使深度学习模型更具泛化性和鲁棒性,常通过颜色归一化和数据增强等对图像进行预处理。目前,深度学习在胃组织病理诊断中的研究也在不断探索,主要包括利用深度学习识别癌变区域,或者对胃组织病变进行分类(包括对病变进行良恶性分类的二分类法,或者区分正常黏膜、胃炎或者胃癌等的三分类法),以及判定胃癌是否出现了淋巴结转移。此外,也有少数研究将人工智能应用于辅助病理医师进行胃组织病变的诊断,这不仅提高了病理医师诊断的准确率,而且缩短了诊断时间。 The application of deep learning in tissue pathology mainly includes diagnosis and grading of tissue pathology,assessment of biomarkers,and patient prognosis.In order to make deep learning models more generalizable and robust,image preprocessing techniques such as color normalization and data augmentation are commonly used.Currently,research on deep learning in gastric tissue pathological diagnosis is also constantly being explored.This mainly includes using deep learning to identify cancerous regions,classifying gastric tissue lesions(including binary classification method for benign and malignant lesions,or ternary classification method for distinguishing between normal mucosa,gastritis,or gastric cancer),and determining the presence of lymph node metastasis in gastric cancer.Additionally,there are also a few studies that use artificial intelligence to assist pathologists in diagnosing gastric tissue lesions,which not only improves the accuracy of pathological diagnosis but also shortens the diagnostic time.
作者 张钦荣(综述) 刘春霞(审校) ZHANG Qinrong;LIU Chunxia(Department of Pathology,Second Affiliated Hospital of Guangzhou Medical University,Guangzhou 510260;Department of Pathology,Shihezi University School of Medicine,Shihezi Xinjiang 832002,China)
出处 《临床与病理杂志》 CAS 2023年第12期2182-2188,共7页 Journal of Clinical and Pathological Research
基金 广州医科大学附属第二医院科研启动经费(010M10048) 新疆生产建设兵团科技发展专项(2018AB033)。
关键词 深度学习 病理诊断 人工智能 病理图像 预处理 deep learning stomach pathological diagnosis artificial intelligence pathological images preprocessing
  • 相关文献

参考文献2

二级参考文献6

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部