期刊文献+

基于自适应阈值和改进粒子群融合的智能导航控制方法

Intelligent Navigation Control Methods Based on Adaptive Thresholding and Improved Particle Swarm Fusion
下载PDF
导出
摘要 智能图像导航技术已成为当今各领域的应用热点。针对于视觉系统对环境的强依赖性、传统Otsu算法只能用于灰度图的局限性、视觉系统精确模型建立困难的问题,设计了一种基于自适应阈值和改进粒子群融合的线性回归智能导航控制方法。所使用的自适应阈值截取算法,基于OPENMV视觉传感器能够提取图像彩色阈值中值信息的简单原理,设计能够在中值基础上左右循环加减,来实时截取目标阈值信息的创新算法。经实验效果对比验证,该算法能使OPENMV分别在彩图和灰度图模式下自动截取目标图像阈值,相较于传统阈值截取算法适用性更强。最后通过仿真结果证明基于以上组合算法的智能循迹控制能够有效降低视觉系统对环境的依赖性,方案可行。 Intelligent image navigation technology has become a prominent application in various fields.To address challenges such as environmental dependence,limitations of traditional algorithms,and difficulties in precise model establishment,a novel method combining adaptive thresholding and improved particle swarm fusion for linear regression intelligent navigation control is proposed in this paper.Experimental results validate the algorithm's effectiveness in real-time threshold extraction for target images,surpassing traditional methods.The combined algorithm significantly reduces the visual system's dependence on the environment,demonstrating the feasibility of the proposed approach.
作者 董沁雨
出处 《工业控制计算机》 2024年第2期104-106,共3页 Industrial Control Computer
关键词 自适应阈值截取算法 改进粒子群算法 运动学建模仿真 PID自整定 adaptive threshold interception improved particle swarm optimization kinematic modeling PID self-tuning
  • 相关文献

参考文献3

二级参考文献35

  • 1董拯,彭程,王永.基于GA-LS指数衰减正弦信号参数估计算法[J].电子技术(上海),2010(10):13-16. 被引量:2
  • 2黄昆,单福林,杨功流,刘玉峰.舰载角速度匹配传递对准方法研究[J].中国惯性技术学报,2005,13(4):1-5. 被引量:18
  • 3Fukuyama Y.Fundamentals of particle swarm techniques [A].Lee K Y,El-Sharkawi M A.Modern Heuristic Optimization Techniques With Applications to Power Systems [M].IEEE Power Engineering Society,2002.45~51 被引量:1
  • 4Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources [A].Proceedings of the IEEE Congress on Evolutionary Computation [C].Piscataway,NJ:IEEE Service Center,2001.81~86 被引量:1
  • 5van den Bergh F.An analysis of particle swarm optimizers [D].South Africa:Department of Computer Science,University of Pretoria,2002 被引量:1
  • 6Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm [A].Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics [C].Piscataway,NJ:IEEE Service Center,1997.4104~4109 被引量:1
  • 7Yoshida H,Kawata K,Fukuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability [A].Proceedings of the International Conference on Intelligent System Application to Power System [C].Rio de Janeiro,Brazil,1999.117~121 被引量:1
  • 8Angeline P.Using selection to improve particle swarm optimization [A].Proceedings of IJCNN99[C].Washington,USA,1999.84~89 被引量:1
  • 9Shi Y,Eberhart R C.A modified particle swarm optimizer [R].IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,May 1998 被引量:1
  • 10Shi Y,Eberhart R C.Empirical study of particle swarm optimization [A].Proceeding of Congress on Evolutionary Computation [C].:Piscataway,NJ:IEEE Service Center,1999.1945~1949 被引量:1

共引文献405

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部