期刊文献+

基于GA-BP神经网络的大型客机气流角估计方法

AirFlow Angle Estimation Method for Large Passenger Aircraft Based on GA-BP Neural Network
下载PDF
导出
摘要 为了解决硬件冗余难以克服的气流角传感器共因故障问题,进一步提高飞机气流角信号的可靠性,研究了基于GABP神经网络的气流角估计方法。通过BP神经网络融合姿态角、加速度、风速等参数来实现不依赖气流角传感器的气流角估计;引入遗传算法对神经网络权值和阈值进行全局优化,提高估计精度;对某大型客机的试飞数据预处理后用于模型的训练和测试。仿真结果表明,训练完成的GA-BP神经网络模型对气流角的估计值贴近实际值,稳定性和精度明显高于BP神经网络。上述方法给飞机增加一个余度的气流角信号,可用于传感器故障时为飞机提供可靠的气流角信号。 In order to solve the common cause fault of airflow Angle sensor which is difficult to overcome by hardware redundancy and further improve the reliability of aircraft air flow Angle signal,an air flow Angle estimation method based on GA-BP neural network was studied.BP neural network was used to integrate attitude Angle,acceleration,wind speed and other parameters to estimate the flow Angle independently of the flow Angle sensor.Genetic algorithm was introduced to optimize the weights and thresholds of neural network globally to improve the estimation accuracy.The model was trained and tested with the pre-processed flight test data of a large aircraft.The simulation results show that the trained GA-BP neural network model's estimation of the airflow angle is close to the actual value,and the stability and estimation accuracy are significantly higher than those of the BP neural network.This method adds a residual air flow Angle signal to the aircraft,which can be used to provide reliable air flow Angle signal for the aircraft when the sensor is faulty.
作者 张伟 张喆 龚孝懿 王昕楠 ZHANG Wei;ZHANG Zhe;GONG Xiao-yi;WANG Xin-nan(School of Intelligent Science and Engineering,Harbin Engineering University,Harbin Heilongjiang 150001,China;Shanghai Aircraft Design and Research Institute,Shanghai 201210,China;School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China)
出处 《计算机仿真》 2024年第1期53-57,102,共6页 Computer Simulation
基金 国家自然科学基金(E1102/52071108) 黑龙江省自然科学基金(JJ2021JQ0075)。
关键词 气流角估计 神经网络 遗传算法 试飞数据预处理 大型客机 Estimation of flow angle Neural network Genetic algorithm(GA) Flight test data preprocessing Large passenger aircraft
  • 相关文献

参考文献7

二级参考文献54

  • 1Chen Kai, Yan Jie, Huang Panfeng. Design of Air Data System of an Aircraft Integrated Electronic Standby Instrument [ C ]. Luoyang: 2006 IEEE International Conference on Mechatronics and Automation,2006. 被引量:1
  • 2Ethan Baumann, Joseph W Pahle, Mark C Davis, et al. X - 43A Flush Airdata Sensing System Flight- test Results [ J ]. Journal of Spacecraft and Rockets ,2010,47 ( 1 ) :48 - 61. 被引量:1
  • 3Hyun Woo Rohl, Yun Jin Park, Nam Eun Park, et al. Air Data System Calibration of T - 50/A - 50 [ C ]. Keystone, Colorado:Atmospheric Flight Mechanics Conference,2006. 被引量:1
  • 4Frank H Gem. Aerodynamic, Thermal, and Anti- icing Analysis of the IMFP Integrated Air Data Sensor[ C ]. Portland, Oregon:34th AIAA Fluid Dynamics Conference,2004. 被引量:1
  • 5William F Ellison,John P Latz. Design and Flight Testing of the X - 35 Air Data System [ C ]. Austin, Texas : AIAA Atmospheric Flight Mechanics Conference,2003. 被引量:1
  • 6Alberto Calla, Eugenio Denti, Roberto Galatolo, et al. Air Data Computation Using Neural Networks [ J ]. Journal of Aircraft,2008,45 (6) : 2078 - 2083. 被引量:1
  • 7Ankur Srivastava, Andrew J Meade, Kurtis R Long. Learning Airdata Parameters for Flush Air Data Sensing Systems [ C ]. Seattle, Washington : AIAA Infotech @ Aerospace Conference and AIAA Unmanned Unlimited Conference,2009. 被引量:1
  • 8Joel C Ellsworth, Stephen A Whitmore. Simulation of a Flush Air-data System for Transatmospheric Vehicles [ J ]. Journal of Spacecraft and Rockets,2008,45 (4) :716 - 732. 被引量:1
  • 9Ankur Srivastava, Andrew J Meade, Ali Arya Mokhtarzadeh. A Hybrid Data- model Fusion Approach to Calibrate a Flush Air Data Sensing System [ C ]. Atlanta, Georgia: AIAA Infotech@ Aerospace ,2010. 被引量:1
  • 10Detlef Rohlf, Oliver Brieger, Thomas Grohs. X - 31 VEC- TOR System Identification- approach and Results [ C ]. Providence,RI:AIAA Atmospheric Flight Mechanics Conference, 2004. 被引量:1

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部