期刊文献+

基于机器学习的煤矿瓦斯浓度预测技术 被引量:1

Coal mine gas concentration prediction technology based on machine learning
下载PDF
导出
摘要 煤矿发生瓦斯灾害前,往往伴随瓦斯浓度异常,准确判断瓦斯浓度是进行瓦斯突出预测、通风设计等工作的基础。通过机器学习的方法,将影响瓦斯浓度的多种因素进行综合计算,探索一种基于机器学习的多因素煤矿瓦斯浓度预测技术,通过构建模型、训练模型、实际使用,计算得出预测值与实际值的误差,并结合实际生产矿井数据,进行验证计算,验证此种方法的可行性,将瓦斯预测技术由被动式变为主动式,为煤矿瓦斯浓度预测提供新思路,同时将大数据、深度学习等智能化技术引入至煤矿瓦斯治理中,具有广阔的应用前景。 Before a gas disaster occurs in a coal mine,it is often accompanied by abnormal gas concentration.Accurately determining gas concentration is the basis for gas outburst prediction,ventilation design,and other related work.We use machine learning method to comprehensively calculate various factors that affect gas concentration,and explore a multi-factor coal mine gas concentration prediction technology based on machine learning.By constructing a model,training the model,and using it in practice,the error between the predicted and the actual value is calculated,and the feasibility of this method verified through actual production mine data.The gas prediction technology is transformed from passive to active,providing a new approach for predicting coal mine gas concentration.Introducing intelligent technologies such as big data and deep learning into coal mine gas management is of widely practical prospect.
作者 徐平安 张若楠 周小雨 赵琦琦 XU Ping’an;ZHANG Ruonan;ZHOU Xiaoyu;ZHAO Qiqi(Ping’an Coal Mining Engineering Technology Research Institute Co.,Ltd.,Huainan 232000,China)
出处 《陕西煤炭》 2024年第3期88-91,144,共5页 Shaanxi Coal
关键词 机器学习 煤矿瓦斯 线性回归算法 浓度预测 machine learning coal mine gas linear regression algorithm concentration prediction
  • 相关文献

参考文献11

二级参考文献80

共引文献34

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部