期刊文献+

基于改进的YOLOV5算法对ADB汽车大灯的外界环境检测

Environment Detection of ADB Automobile Headlamps Based on Improved YOLOV5 Algorithm
下载PDF
导出
摘要 针对远光灯交汇会影响汽车驾驶员的视觉注意力,导致汽车驾驶员夜间行驶安全难以得到保障的问题,研究基于机器视觉及深度学习的ADB汽车大灯的外界环境检测方法;通过机器视觉的CCD相机采集ADB汽车大灯外界环境图像数据,利用数据筛选方法剔除采集到的图像数据中干扰光源数据,依据路况特征差异,划定ADB汽车大灯外界环境检测目标区域后,通过深度学习算法检测外界环境目标车灯光源,结合扩展卡尔曼预测各目标车灯光源轨迹,当车辆前方有车灯光源经过时,ADB系统及时调整汽车远光灯对应区域灯珠亮度,减少在高速行驶时因远光灯交汇对汽车驾驶员的视觉影响,保障汽车安全行驶;实验结果表明,该方法可有效剔除各类干扰光源,准确检测目标车灯光源,且目标车灯光源轨迹预测结果与真实结果非常接近,可精准完成ADB汽车大灯的外界环境检测。 Aiming at the problem that the intersection of high beam headlights affects the visual attention of automobile drivers,so it is difficult to ensure the safety of automobile drivers driving at night,this paper studies the external environment detection method of adaptive driving beam(ADB)automobile headlights based on machine vision and deep learning.The image data of external environment for the ADB automobile headlights is acquired through the CCD camera of machine vision,the data filtering method is used to eliminate the interference light source data in the collected image data,delimit the detection target area of external environment for the ADB automobile headlights according to different road conditions,detect the light source of external environment target through depth learning algorithm,and predic each target light source track in combination with extended Kalman filtering.When there is a car s headlamp source in front of vehicles,The ADB system timely adjusts the brightness of the light beads in the corresponding area of the car s high beam headlights,reducing the impact of the high beam intersection on the driver vision during high-speed driving,and ensuring the safe driving of cars.The experimental results show that this method can effectively eliminate all kinds of interference light sources,accurately detect the target light source,and the trajectory prediction results of the target light source are very close to the real results,which can accurately complete the external environment detection of ADB automobile headlights.
作者 黄禹 戴国洪 戴杰 钱骏 HUANG Yu;DAI Guohong;DAI Jie;QIAN Jun(School of Mechanical Engineering,Changzhou University,Changzhou 213164,China;Changzhou Xingyu Lamp Co.,Ltd.,Changzhou 213002,China)
出处 《计算机测量与控制》 2024年第2期22-28,共7页 Computer Measurement &Control
关键词 机器视觉 深度学习 ADB汽车大灯 外界环境检测 图像数据采集 数据筛选 machine vision deep learning ADB headlights external environment detection image data acquisition data filtering
  • 相关文献

参考文献17

二级参考文献105

共引文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部