摘要
针对液化超声中超声振子在不同负载下工作导致的换能器发热不同,进而影响换能器工作效率和使用寿命问题,从理论和实验方面研究了工作在串联谐振点的换能器在不同负载环境下的动态电阻变化和发热特性。研究获得了不同液体负载条件如不同液体温度、液体黏稠度、浸入深度、液体密度等下,换能器的动态电阻变化与换能器发热量的映射关系。针对串联谐振频率下的换能器,通过理论计算得到了动态电阻与电压电流关系。针对阻抗分析仪驱动功率较低,不能准确测试换能器有载时的动态电阻变化趋势的缺点,设计了一种测试换能器有载时的动态电阻变化趋势的方案。基于频率追踪芯片实现了频率追踪电路,保证了超声换能器工作频率始终处于换能器串联谐振点。本研究可为提升工作在复杂负载环境下的超声电源可靠性提供参考。
For the problem of different heat generation of the transducer caused by the operation of the ultrasonic vibrator under different loads in liquefied ultrasound,the dynamic resistance change and heat generation of the transducer working in series resonant frequency under different load environments are studied from theoretical and experimental aspects.The mapping relationship between the dynamic resistance change and the heat generation of the transducer in the transducer equivalent circuit model is obtained for different liquid load variations such as liquid temperature,liquid viscosity,immersion depth,liquid density,etc.For the transducer at series resonant frequen-cy,the dynamic resistance versus voltage and current is obtained by theoretical calculation.In view of the drawback that the impedance analyzer has low driving power and cannot accurately test the dynamic resistance change trend when the transducer is loaded,a scheme is designed to test the dynamic resistance change trend when the transducer is loaded.A series resonant point frequency tracking circuit based on frequency-tracking chip is implemented to ensure that the ultrasonic power output frequency is always at the transducer series resonant point.This research can provide a reference for improving reliability of ultrasonic power working in complex load environment.
作者
陈遥
郭南翔
刘超然
杨伟煌
王焕泽
罗锡棋
岳晨曦
董林玺
CHEN Yao;GUO Nanxiang;LIU Chaoran;YANG Weihuang;WANG Huanze;LUO Xiqi;YUE Chenxi;DONG Linxi(Smart Microsensors and Microsystems Engineering Research Center of Ministry of Education,College of Electronics and Information,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China;Zhejiang Hongzhen Smart Chip Co.,Ltd,Huzhou Zhejiang 313200,China)
出处
《传感技术学报》
CAS
CSCD
北大核心
2024年第1期8-15,共8页
Chinese Journal of Sensors and Actuators
基金
国家重点研发计划项目(2018YFB2002900)
国家自然科学基金项目(61871167,U1909221)
浙江省级人才项目(2021R52009)。
关键词
超声换能器
液体负载环境
换能器发热
动态电阻
频率跟踪方案
ultrasonic transducer
liquid load environment
transducer heat
dynamic resistance
frequency tracking scheme