摘要
纳米尺度研究的发展对原子力显微镜的核心运动部件一一纳米定位平台的定位精度与扫描速度提出了更高要求。针对平台运动耦合与谐振频率两项关键性能展开研究,设计了一种新型基于压电陶瓷驱动的二维高带宽低耦合纳米定位平台。结构设计上,首先提出高刚度并联解耦结构,然后基于内外侧柔性铰链刚度解耦假设,确立了高刚度低耦合设计方案。为进一步提升平台谐振频率,建立尺寸参数优化模型,以平台一阶谐振频率为优化目标进行优化设计。优化结果与有限元仿真结果误差小于6%,验证了设计方法的准确性。最后,加工样机并搭建实验系统。性能实验结果证明本文设计平台达到高带宽低耦合设计目标。平台性能与同类型现有平台相比,谐振频率提升20%,静态耦合降低80%,动态耦合降低30%,有助于原子力显微镜性能提升。
With the development of nanoscale study,the demand for nanopositioning stages with higher positioning accuracy and scanning speed,which are the core component of atomic force microscopes,has increased.In this paper,the motion coupling and resonant frequency of the stage are studied.A two-dimensional high-bandwidth low-coupling nanopositioning stage based on piezoelectric actuators is designed.First,a high-stiffness parallel decoupling structure is proposed.Then,a high-stffness and low-coupling stage is established based on the stiffness decoupling assumption of the inner and outer flexible hinges.In order to further improve the resonant frequency of the stage,an optimization model of size parameters is established.The optimization function is the first-order resonant frequency of the stage.The error between the finite element simulation results and the optimization results is less than 6%,which verifies the accuracy of the design method.Finally,the prototype is processed and the experimental system is built.The performance experimental result proves that the high-bandwidth and low-coupling of the stage are achieved.Compared with other stages of the same type,the resonant frequency is increased by 20%,the static coupling is reduced by 80%,and the dynamic coupling is reduced by 30%.The nanopositioningstage proposed in this paper is helpful to the performance improvement of atomic force microscopy.
作者
严武林
黄维维
朱利民
YAN Wulin;HUANG Weiwei;ZHU Limin(Shanghai Jiao Tong University,Shanghai 200240,China)
出处
《机械设计与研究》
CSCD
北大核心
2023年第6期159-165,共7页
Machine Design And Research
基金
国家自然科学基金资助项目(51975375)。
关键词
纳米定位平台
压电陶瓷驱动器
高带宽
运动解耦
nanopositioning stage
piezoelectric actuators
high-bandwidth
motion decoupling