期刊文献+

基于文本挖掘的进口跨境电商服务质量研究

Research on Service Quality of Imported Cross-border E-commerce Based on Text Mining
下载PDF
导出
摘要 利用Python采集京东国际个护产品消费者的在线评论,通过文本特征分析得出“物流”、“效果”、“包装”等是影响进口跨境电商消费者满意度的关键要素。随后利用LDA主题聚类模型,结合困惑度和主题可视化,得到反映进口跨境电商服务质量的4类关键因素,包括物流效率、产品功效、感知价值和产品体验。基于此,提出改善进口跨境电商服务质量的策略。 This article uses Python to collect online comments from JD International's personal care products.Through text feature analysis,it is concluded that"logistics","effectiveness",and"packaging"are key factors that affect consumer satisfaction in imported cross-border e-commerce.Then,by using the LDA theme clustering model,combined with Perplexity and theme visualization,the dimensions of import cross-border e-commerce consumers'main concerns are obtained.The results indicate that the key factors affecting the quality of imported cross-border e-commerce services mainly include four dimensions:Logistics efficiency,product efficacy,price discounts,and product experience.Based on this,propose strategies to improve the quality of imported cross-border e-commerce services.
作者 宋春燕 SONG Chunyan(School of Management,Guizhou University,Guiyang 550000,China)
出处 《物流科技》 2024年第3期55-57,65,共4页 Logistics Sci-Tech
关键词 在线评论 进口跨境电商 服务质量 文本挖掘 online comments import cross-border e-commerce service quality text mining
  • 相关文献

参考文献4

二级参考文献20

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部