期刊文献+

混合U-Net模型下南方丘陵地区耕地识别

Cropland recognition in southern hilly areas under a hybrid U-Net model
下载PDF
导出
摘要 针对南方丘陵地区耕地零散、破碎、不规则导致的山垅田识别难度大、准确率低等问题,本文在U-Net网络基础上,引入高效通道注意力(ECA)和注意力门(AG)双注意力机制,提出了混合U-Net模型,并应用于福建省南安市2021年WorldView-2卫星影像的耕地提取。试验表明:混合U-Net模型识别的耕地取得了较好精度,总体精度达到93.42%,优于单一注意力机制模型ECA U-Net和U-Net模型,分别提升了9.75%和19%;混合U-Net模型在山区、半丘陵、平原3个不同地形的测试区域,耕地F1分数平均值分别为0.9212、0.9025、0.9322,特别是在山区、半丘陵地区较ECA U-Net和U-Net模型结果提升明显。在此基础上,对南安市耕地空间分布进行了分析,为山垅田撂荒复耕种粮、合理调整25°以上坡耕地、耕地数量管控提供了有效技术支持。 In order to solve the difficulties and low accuracy of sloping cropland identification caused by scattered,fragmented and irregular cropland in southern hilly areas,based on the U-Net,the efficient channel attention(ECA)and the attention gate(AG)dual attention mechanism are introduced,and a hybrid U-Net model is proposed.This model is applied to extract cropland from WorldView-2 satellite images in Nan'an of Fujian province in 2021.Experiment shows that the hybrid U-shaped network model has achieved a good accuracy of 93.42%,which is better than a single-attention mechanism model(ECA U-Net and U-Net),and the accuracy has increased by 9.75% and 19% respectively.The average F1 scores of cropland in the hybrid U-Net model are 0.9212,0.9025 and 0.9322 respectively in the mountainous,semi hilly and plain test areas,especially in the mountainous and semi hilly areas.On this basis,the spatial distribution of cropland in Nan'an is analyzed,which provided effective technical support for abandoned hillside fields for grain cultivation,rational adjustment of slope cropland exceeding 25 degrees,and effective control of cropland quantity.
作者 吴瑞姣 WU Ruijiao(Fujian Geologic Surveying and Mapping Institute,Fuzhou 350011,China)
出处 《测绘通报》 CSCD 北大核心 2023年第12期57-62,111,共7页 Bulletin of Surveying and Mapping
基金 福建省科技厅创新资金(2022C0024) 福建省科技厅引导性项目(2022N0019)。
关键词 耕地 高分辨率影像 注意力机制 U-Net 南方丘陵地区 cropland high-resolution image attention mechanism U-Net southern hilly area
  • 相关文献

参考文献7

二级参考文献74

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部