期刊文献+

量子模糊朴素贝叶斯分类算法

Quantum Fuzzy Naive Bayesian Classification Algorithm
下载PDF
导出
摘要 以传统朴素贝叶斯算法为基础,研究并提出一种高效、准确的量子模糊贝叶斯分类算法。首先将“模糊集合理论+朴素贝叶斯理论”交叉融合,定义模糊先验概率、模糊条件概率,将朴素贝叶斯推广至模糊朴素贝叶斯,构建模糊贝叶斯模型;其次,将“模糊贝叶斯模型+量子计算”交叉融合,将模糊数据集量子化(编码到量子态上)并设计量子线路,提出一种量子模糊朴素贝叶斯分类算法;最后,将该算法应用到鸢尾花数据集。仿真实验表明,与传统朴素贝叶斯分类算法相比,该算法具有较高的分类效率和准确率。 In today’s era of big data,it is difficult for traditional naive Bayesian algorithms to efficiently and accurately deal with the complexity and uncertainty of big data.Based on the traditional Naive Bayes algorithm,this paper proposes an efficient and accurate quantum fuzzy Bayesian classification algorithm.First,the“fuzzy set theory+naive Bayes theory”is cross-integrated,the fuzzy prior probability and fuzzy conditional probability are defined,and the naive Bayes is extended to fuzzy naive Bayes to construct a fuzzy Bayes model;Secondly,a quantum fuzzy naive Bayesian classification algorithm is investigated and implemented by quantizing fuzzy data sets(encoding to quantum states)and designing quantum circuits.Finally,the algorithm proposed in this paper is applied to the iris dataset.Simulation experiments show that the proposed classification algorithm has higher classification efficiency and accuracy compared with the traditional Naive Bayesian classification algorithm.
作者 侯敏 张仕斌 黄曦 HOU Min;ZHANG Shibin;HUANG Xi(School of Cybersecurity,Chengdu University of Information Technology,Chengdu 610225,China;Advanced Cryptography and System Security Key Laboratory of Sichuan Province,Chengdu 610225,China;School of Information Science and Technology,Southwest Jiaotong University,Chengdu 610031,China)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第1期149-154,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(62076042) 国家重点研发计划“网络空间安全治理”重点专项课题(2022YFB3103103) 成都市重点研发项目(2023-XT00-00002-GX) 四川省重点研发计划项目(2022YFS0571)。
关键词 模糊集合理论 朴素贝叶斯分类 量子计算 量子机器学习 fuzzy set theory naive bayesian classification quantum computing quantum machine learning
  • 相关文献

参考文献11

二级参考文献205

  • 1Shoshani A. Statistical databases: characteristics, problems, and some solutions. In: Proceedings of the 8th Interna- tional Conference on Very Large Data Bases, Mexico City, 1982. 208-222. 被引量:1
  • 2Shoshani A, Olken F, Wong H K T. Characteristics of scientific databases. In: Proceedings of the 10th International Conference on Very Large Data Bases, Singapore, 1984. 147-160. 被引量:1
  • 3Shoshani A, Wong H K T. Statistical and scientific database issues. IEEE T~'ans Softw Eng, 1985, 11:1040-1047. 被引量:1
  • 4Turing A M. On computable numbers, with an application to the entscheidungs problem. Proc London Math Soc, 1936, 2:230-265. 被引量:1
  • 5李建中.大数据计算的挑战.见:香山科学会议,北京,2012. 被引量:1
  • 6李建中.大数据计算的基本概念与研究问题.见:国家基金委第89期双清论坛,上海,2014. 被引量:1
  • 7Li J Z. Complexity, algorithms and quality of big data intensive computing. In: Proceedings of the 19th International Conference on Database Systems for Advanced Applications, Bali, 2014. 230-265. 被引量:1
  • 8李建中.大数据计算的研究问题和部分解.见:第30届中国数据库学术会议,哈尔滨,2013. 被引量:1
  • 9Kleene S C. General recursive functions of natural numbers. MATH ANN, 1936, 112:727-742. 被引量:1
  • 10Post E L. Finite combinatory processes-formulation 1. J Symb Log, 1936, 1:103-105. 被引量:1

共引文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部