摘要
对敌防空压制(suppression of enemy air defenses, SEAD)场景是多无人机协同的典型应用,针对该场景特点,在任务规划问题基础上将各类型无人机数量也作为决策变量,充分表征目标、任务和无人机的多种约束,建立异构无人机编队路径问题模型。设计了双层联合优化方法求解该模型:上层设计了任务衔接参数指标,精确评估各类型无人机需求,指导无人机配置调整;下层设计了改进遗传算法,高效处理多类型约束并能结合无人机数量变化对任务方案进行精细调整;双层相互协调获得满足需求的无人机配置和执行方案。仿真结果表明,该方法可以在避免遍历无人机配置组合的前提下获得合理的无人机配置方案和高效可行的执行方案。
SEAD(suppression of enemy air defenses)is a typical application scenario of multi-UAV cooperation.Based on the characteristics of this scenario,the number of different types of UAV was also used as a decision variable in the task planning problem,fully characterizing the various constraints of the target,mission,and UAV,and establishing a heterogeneous UAV formation path problem model.A two-layer joint optimization method was designed to solve the model:the upper layer was designed with the task connection impact indicator to accurately assess the quantitative requirements of various types of UAVs and guide UAVs configuration adjustments;the lower layer improved the genetic algorithm,which can efficiently handle multiple coupling constraints and can accurately adjust the mission plan in conjunction with UAV quantity changes.The two layers coordinate with each other to obtain a UAV configuration and mission execution plan that meet the requirements.Simulation results show that the method can obtain a reasonable UAV configuration plan without traversing various UAV configurations,while obtaining an efficient and feasible mission execution plan.
作者
王建峰
贾高伟
辛宏博
郭正
侯中喜
WANG Jianfeng;JIA Gaowei;XIN Hongbo;GUO Zheng;HOU Zhongxi(College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China)
出处
《国防科技大学学报》
EI
CAS
CSCD
北大核心
2024年第1期32-41,共10页
Journal of National University of Defense Technology
基金
国家自然科学基金资助项目(61801495)。
关键词
SEAD场景
异构无人机
无人机配置
任务规划
任务衔接参数
SEAD scenarios
heterogeneous UAV
UAV configuration
mission planning
mission connection parameters