摘要
虚拟电厂可聚合配网末端的可调节负荷资源参与电力系统的调用以缓解面临的供需平衡等问题。同时末端资源功率的调节影响着配网的运行质量,负荷侧资源的调用可降低配网区域峰谷差,减少系统网损。为此,以配网运营商为主体构建虚拟电厂,提出一种基于改进AUGMECON的配网虚拟电厂多目标优化模型,以运行效益、配网峰谷差和配网网损为目标函数,调用配网末端负荷资源参与需求响应,在提高运行收益的同时改善配网运行质量。通过改进AUGMECON获取所提多目标优问题的Pareto前沿,并采用考虑公平性的方法获取折中解。最后基于修改后的IEEE 33节点配电网系统进行了仿真分析,验证了所提模型的有效性。
Virtual power plants can aggregate adjustable load resources at the end of distribution network to participate in power system calls to alleviate the problems faced by the supply and demand balance.At the same time,the power regulation of the end resources affects the operation quality of the distribution network,and the invocation of load-side resources can reduce the peak-to-valley difference in the distribution network area and reduce the system network loss.To this end,a virtual power plant with the distribution network operator as the main body is constructed,and a multi-objective optimization model of distribution network virtual power plant based on AUGMECON2 is proposed,which invokes the end load resources of distribution network to participate in the demand response with the operation benefit,distribution network peak-valley difference and distribution network loss as the objective functions,and improves the operation quality of distribution network while improving the operation benefit.The Pareto frontier of the proposed multi-objective optimal problem is obtained by AUGMECON2,and a compromise solution is obtained by considering fairness.Finally,simulation analysis based on the modified IEEE 33-node distribution network system is conducted to verify the effectiveness of the proposed model.
作者
庄重
孔月萍
杨世海
段梅梅
周雨奇
丁泽诚
张汀荃
ZHUANG Zhong;KONG Yueping;YANG Shihai;DUAN Meimei;ZHOU Yuqi;DING Zecheng;ZHANG Tingquan(Marketing Service Center,State Grid Jiangsu Electric Power Co.,Ltd.,Nanjing 210019,China)
出处
《电力需求侧管理》
2024年第1期42-47,共6页
Power Demand Side Management
基金
国网江苏省电力有限公司科技项目“面向城市电网弹性运行的虚拟电厂聚合关键技术研究”(J2022045)。
关键词
AUGMECON2
虚拟电厂
配电网
多目标优化
网损
峰谷差
AUGMECON2
virtual power plant
distribution network
multi-objective optimization
network loss
peak-to-valley difference