期刊文献+

基于集成卷积神经网络的行星齿轮智能诊断方法 被引量:1

Intelligent Diagnosis Method of Planetary Gear Based on Integrated Convolutional Neural Network
下载PDF
导出
摘要 针对行星齿轮箱故障振动特征需要预处理、识别困难以及诊断模型收敛速度较慢的问题,提出基于集成卷积神经网络的行星齿轮箱智能故障诊断方法。首先,采用一维卷积对齿轮的原始时域振动信号提取特征,之后通过采用两个弱分类器,根据弱分类学习错误率的性能更新样本权重,调整权重后根据训练集训练弱分类器。重复此过程,最后通过设置策略整合弱分类器,形成集成卷积神经网络;建立一个稳定用于行星齿轮箱的智能故障诊断的模型。实验结果表明:集成卷积神经网络能很好地对行星齿轮原始振动信号进行快速诊断。相对于传统卷积神经网络对齿轮原始时域振动故障信号的诊断具有更强的辨识能力和更快的收敛速度;所建立的智能诊断模型可以有效地诊断齿轮不同的故障状态。 Aiming at the problems of planetary gearbox fault vibration characteristics that require preprocessing,identification difficulties,and slower convergence of the diagnostic model,an intelligent fault diagnosis method for planetary gearboxes based on integrated convolutional neural networks is proposed.First,one-dimensional convolution is used to extract features from the original time-domain vibration signal of the gear,and then two weak classifiers are used to update the sample weights according to the performance of the weak classification learning error rate,and the weak classifiers are trained according to the training set after adjusting the weights.Repeat this process,and finally integrate the weak classifiers by setting strategies to form an inte-grated convolutional neural network;establish a stable model for intelligent fault diagnosis of planetary gearboxes.Experimental results show that the integrated convolutional neural network can quickly diagnose the original vibration signals of planetary gears.Compared with the traditional convolutional neural network,it has stronger identification ability and faster convergence speed in the diagnosis of the original time domain vibration fault signal of the gear;the established intelligent diagnosis model can effectively diagnose the different fault states of the gear.
作者 黄克康 武兵 张志伟 HUANG Ke-kang;WU Bing;ZHANG Zhi-wei(Taiyuan University of Technology,Institute of Mechanical and Electronic Engineering,Shanxi Taiyuan 030024,China;Key Labora-tory of Taiyuan University of Technology,New Sensors and Intelligent Control,Ministry of Education,Shanxi Taiyuan 030024,China)
出处 《机械设计与制造》 北大核心 2024年第1期170-174,共5页 Machinery Design & Manufacture
基金 山西省科技重大专项项目(20181102027)。
关键词 集成学习 卷积神经网络 原始振动信号 智能诊断 Ensemble Learning Convolutional Neural Network Original Vibration Signal Intelligent Diagnosis
  • 相关文献

参考文献7

二级参考文献117

  • 1李巍.自动变速器行星齿轮系统传动原理[J].汽车维修,2004(8):60-61. 被引量:2
  • 2GuoG D, Zhang H J. Boosting for Fast Face Recognition. In: Proc of 2nd International Workshop on Recognition, Analysis and Tracking of Faces and Gestures in Real-Time Systems. Vancouver, Canada, 2001, 96- 100. 被引量:1
  • 3Abney S, Schapire R E, Singer Y. Boosting Applied to Tagging and PP Attachment. ln: Proc of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora. New Brunswick, NJ, 1999, 38-45. 被引量:1
  • 4Rochery M, Schapire R E, Rahim M, Gupta N. BoosTexter for Text Categorization in Spoken Language Dialogue. In: Autmmtic Speech Recognition and Understanding Workshop. Madonna di Campiglio Trento, Italy, 2001. Available at http://www, cs.princeton, edu/-schapire/publist, html. 被引量:1
  • 5Rochery M, Schapire R, Rahim M, Gupta N, Riceardi G, Bangalore S, Alshawi H, Douglas S. Combining Prior Knowledge and Boosting for Call Class~flcat~on in Spoken Language DiaLogue. In:Proc of International Conference on Aceousties, Speech and Signal. Orlando, Florida. 2002. Available at http://www, cs/princetonedu/-schapire/whatsnew. html. 被引量:1
  • 6Schapire R E, Singer Y. BcosTexter: A Bcosting-Based System for Text Categorization. Machine Learning, 2000, 39(2- 3): 135- 168. 被引量:1
  • 7Schapire R E, Rochery M, Rahim M, Gupta N. Incorporating Prior Knowledge into Boosting. In: Proc of the 19th International Conference on Machine Learning. Sydney, 2002, 538 - 545. 被引量:1
  • 8Schwenk H, Bengio Y. Adal3oosting Neural Networks: Application to On-Line Character Recognition. In: Proc of the International Conference on Artificial Neural Networks ( ICANN' 97 ). Lausanne, Switzerland: Springer-Verlag, 1997, 967-972. 被引量:1
  • 9Schwenk H. Using Boosting to lmprove a Hybrid HMM/'Neural Network Speech Recognizer. In: Proc of the IEEE International Conferenee on Acoustics, Speech, and Signal (ICASSP 99 ). Phoenix, Arizona, 1999, H : 1009 - 1012. 被引量:1
  • 10Myers K, Keams M, Singh S, Walker M A. A Boosting Approach to Topic Spotting on Subdialogues. In: Proc of the 17th International Conference on Machine Learning. San Francisco: Morgan Kaufmann, 2000, 655 - 662. 被引量:1

共引文献290

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部