期刊文献+

改进的VGG16在水稻稻瘟病图像识别中的应用 被引量:3

Application of improved VGG16 in rice blast image recognition
下载PDF
导出
摘要 针对水稻稻瘟病中人工识别的效率低、识别能力差和识别技术应用不普及的问题,提出基于改进VGG16模型的稻瘟病病症精准识别模型——VGG16-H。首先,建立水稻稻瘟病的病斑图像RiceLeafs数据集,利用计算机视觉和OpenCV将RiceLeafs原始数据进行随机旋转、随机亮度变换、随机对比度等操作,以扩充样本数和增强数据;其次,在传统VGG16模型的基础上,减少卷积核数,增加Dropout层和GN(Group Normalization)层,以减少模型参数,降低运算负荷,提高检测性能,加快模型收敛;最后,通过PyTorch深度学习平台训练,使用卷积神经网络(CNN)构建VGG16-H模型。实验结果表明,VGG16-H模型的训练识别率比支持向量机(SVM)和VGG16模型分别提高了2.4和0.8个百分点,测试识别率分别提高了2.4和1.6个百分点。验证了VGG16-H模型能在计算资源有限、水稻病病斑分散条件下提高模型的识别率且不增加过多的训练时耗,在实际农业运用中具有较好的效果。 To address the problems of low efficiency,poor recognition ability and not universal application of recognition technology in manual recognition for rice blast,a precise recognition model for rice blast based on an improved VGG16 model which called VGG16-H was proposed.Firstly,the RiceLeafs dataset of rice blast spot images was built,and the original RiceLeafs data was expanded and enhanced through random rotation,random brightness transformation,radom contrast and other processing operations by using computer vision and OpenCV.Then,based on the traditional VGG16 model,the number of convolutional kernels of the VGG16 model was reduced,and the Dropout layer and GN(Group Normalization)layer were added to reduce the model parameters,reduce the computational load,improve the detection performance and accelerate the model convergence.Finally,the VGG16-H model was constructed by using Convolutional Neural Network(CNN)trained on the PyTorch deep learning platform.The experimental results show that the training recognition rate of the VGG16-H model is 2.4 and 0.8 percentage points,and the test recognition rate is 2.4 and 1.6 percent points,higher than that of Support Vector Machine(SVM)and VGG16 models.The VGG16-H model is proven to be effective in practical agricultural applications,as it can improve the recognition rate without increasing the training time under the conditions of limited computational resources and scattered rice spots.
作者 胡骏 陆兴华 林柽莼 陈嘉铧 邓雨铮 许丽娟 HU Jun;LU Xinghua;LIN Chengchun;CHEN Jiahua;DENG Yuzheng;XU Lijuan(Department of Data Science,Guangzhou Huashang College,Guangzhou Guangdong 511300,China;Institute of Computer Control Technology,Guangzhou Huali College,Guangzhou Guangdong 511325,China;Department of Economics and Trade,Guangzhou Huashang College,Guangzhou Guangdong 511300,China)
出处 《计算机应用》 CSCD 北大核心 2023年第S02期196-200,共5页 journal of Computer Applications
基金 国家级大学生创新创业训练项目(202312621004) 广东省普通高校特色创新类项目(2019KTSCX236)。
关键词 卷积神经网络 分类识别 OPENCV VGG16模型 支持向量机 稻瘟病 Convolutional Neural Network(CNN) classification recognition OpenCV VGG16 model Support Vector Machine(SVM) rice blast
  • 相关文献

参考文献14

二级参考文献90

共引文献230

同被引文献16

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部