期刊文献+

改进ReliefF算法在北斗信号干扰特征选择中的应用

Application of Improved ReliefF Algorithm in Beidou Signal Interference Feature Selection
下载PDF
导出
摘要 北斗导航信号在城市环境中容易受到复杂的干扰,这些干扰严重影响北斗接收机的定位精度。干扰特征中包含着对评估目的贡献较少的特征,这部分贡献较少的特征会影响分类结果的准确性。论文仿真了北斗卫星干扰信号并对信号进行特征提取组成预选特征集。同时提出了一种使用新的距离计算方式并可在所有样本核心圈进行迭代的改进型Re⁃liefF算法。可行性验证表明改进型ReliefF算法在选取特征为6维的情况下分类精度提升2%。最后使用改进型ReliefF算法提出预选特征集中贡献较大的部分,实现了由12维到8维的特征降维,得到8维最优特征子集。 Beidou navigation signals are susceptible to complex interference in urban environments,which seriously affect the positioning accuracy of Beidou receivers.The interference features contain features that contribute less to the evaluation purpose,and these features that contribute less will affect the accuracy of the classification results.In this paper,the Beidou satellite interfer⁃ence signal is simulated and the signal features are extracted to form a preselected feature set.At the same time,an improved Re⁃liefF algorithm that uses a new distance calculation method and can iterate in all sample core circles is proposed.The feasibility veri⁃fication shows that the improved ReliefF algorithm can improve the classification accuracy by 2%when the selected features are 6-dimensional.Finally,the improved ReliefF algorithm is used to propose the pre-selected feature set that contributes more,and the feature dimension reduction from 12-dimensional to 8-dimensional is realized,then the 8-dimensional optimal feature subset is gotten.
作者 刘蔚 王黎明 姚金杰 LIU Wei;WANG Liming;YAO Jinjie(Institute of Signal Capturing&Processing Technology,Key Laboratory of Shanxi Province,North University of China,Taiyuan 030051)
出处 《舰船电子工程》 2023年第10期82-86,131,共6页 Ship Electronic Engineering
关键词 北斗卫星导航信号 RELIEFF算法 特征降维 最优特征子集 Beidou satellite navigation signal ReliefF algorithm feature dimension reduction optimal feature subset
  • 相关文献

参考文献7

二级参考文献41

  • 1林舒杨,李翠华,江弋,林琛,邹权.不平衡数据的降采样方法研究[J].计算机研究与发展,2011,48(S3):47-53. 被引量:31
  • 2张丽新,王家廞,赵雁南,杨泽红.基于Relief的组合式特征选择[J].复旦学报(自然科学版),2004,43(5):893-898. 被引量:44
  • 3吴浩苗,尹中航,孙富春.Relief算法在笔迹识别中的应用[J].计算机应用,2006,26(1):174-176. 被引量:18
  • 4李颖新,李建更,阮晓钢.肿瘤基因表达谱分类特征基因选取问题及分析方法研究[J].计算机学报,2006,29(2):324-330. 被引量:45
  • 5SCHERWANI K, ALl N, LOTIA N. A computational economy based job scheduling system for clusters [ J]. Software Practice and Experience, 2004, 34(6): 581-598. 被引量:1
  • 6KANG O-H, KANG S S. A Web-based toolkit for scheduling simu- lation using GridSim [ C]//GCC'06: Proceedings of the Fifth Inter- national Conference on Grid and Cooperative Computing. Changsha, China: IEEE, 2006:256-271. 被引量:1
  • 7SWINIARSKI R W, SKOWRON A. Rough set methods in feature selection and recognition [ J]. Pattern Recognition Letters, 2003, 24(6) : 833 -849. 被引量:1
  • 8KIRA K, RENDELL L A. A practical approach to feature selection [ C]// Proceedings of the 9th International Workshop on Machine Learning. Washington, DC: [ s. n. ], 1992:249 -256. 被引量:1
  • 9ZHANG JIANJIE, LIN HAO, ZHAO MINGGUO. A fast algorithm for hand gesture recognition using relief [ C]// ICNC 2009: Pro- ceedings of the Sixth International Conference on Fuzzy Systems and Knowledge Discovery. Washington, DC: IEEE Computer Society, 2009:8 - 13. 被引量:1
  • 10KONONENKO I. Estimating attributes: Analysis and extensions of RELIEF [ C]//ECML-94: Proceedings of the 1994 European Con- ference on Machine Learning, LNCS 784. Berlin: Springer, 1994: 171 - 182. 被引量:1

共引文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部