期刊文献+

基于ReliefF算法与遗传算法的肌电信号特征选择 被引量:18

Feature Selection of Emg Signal Based on ReliefF Algorithm and Genetic Algorithm
下载PDF
导出
摘要 针对肌电信号特征维数高、运算效率低等问题,提出了一种基于ReliefF算法与遗传算法(GA)相结合的肌电信号特征选择方法.分析了肌电信号的特征,运用小波分析对肌电信号进行特征提取,采用ReliefF算法评估所提取的高维特征信号的权值,以选出对分类效果影响显著(权值较大)的特征子集,采用GA进一步筛选出分类效果最佳的特征子集,并对比分析了基于ReliefFGA-Wrapper算法与全局搜索算法对肌电信号处理的时间和分类效果.结果表明,所提出的方法能够提高运算效率并具有很好的分类效果. To address the high dimension of signal characteristics and low operation efficiency of electromyography(EMG),an algorithm for feather selection was proposed based on ReliefF feature evaluation and the genetic algorithm.The characteristics of the signal was analyzed,the features of the EMG signal with wavelet transform were extracted,the weight of each feature was assessed using the ReliefF algorithm,and the feature subset which has a obvious influence upon classification result was selected.Then the best feature subset for the classification results was screened out by using the genetic algorithm.Besides,the operation time and classification results of the ReliefF-GA-Wrapper algorithm were compared with those of the global search.The result shows that the proposed algorithm not only guarantees a good classification result but also improves the operational efficiency.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第2期204-208,共5页 Journal of Shanghai Jiaotong University
基金 国家重点基础研究发展规划(973)项目(2011CB013305) 国家自然科学基金项目(51475288 51275293) 中国博士后科学基金项目(2014M551406)资助
关键词 肌电信号 RELIEFF算法 遗传算法 特征选择 electromyography(EMG) signal ReliefF algorithm genetic algorithm(GA) feature selection
  • 相关文献

参考文献9

  • 1REAZ M B I, HUSSAIN M S, MOHDYASIN F. Techniques of EMG signal analysis: detection, processing, classification and applications[J].Biological Procedures Online, 2006, 8(1): 11-35. 被引量:1
  • 2CHU J U, MOON I, MUN M S. A realtime EMG pattern recognition system based on linearnonlinear feature projection for a multifunction myoelectric hand[J].IEEE Transactions on Biomedical Engineering, 2006, 53(11): 2232-2239. 被引量:1
  • 3BERMEJO P, GMEZ J A, PUERTA J M. A GRASP algorithm for fast hybrid (filterwrapper) feature subset selection in highdimensional datasets[J].Pattern Recognition Letters, 2011, 32(5): 701-711. 被引量:1
  • 4CHEN P, WANG M H, SHEN Y, et al. Reconstruction and analysis of transcription factormiRNA coregulatory feedforward loops in human cancers using filterwrapper feature selection[J].PloS One, 2013, 8(10): e78197. 被引量:1
  • 5张丽新,王家廞,赵雁南,杨泽红.基于Relief的组合式特征选择[J].复旦学报(自然科学版),2004,43(5):893-898. 被引量:44
  • 6FUREY T S, CRISTIANINI N, DUFFY N, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data[J].Bioinformatics, 2000, 16(10): 906-914. 被引量:1
  • 7LAMBROU T, KUDUMAKIS P, SPELLER R, et al. Classification of audio signals using statistical features on time and wavelet transform domains[C]//Acoustics, Speech and Signal Processing of the IEEE International Conference. USA: IEEE, 1998: 3621-3624. 被引量:1
  • 8蒋玉娇,王晓丹,王文军,毕凯.一种基于PCA和ReliefF的特征选择方法[J].计算机工程与应用,2010,46(26):170-172. 被引量:25
  • 9CHU J U, MOON I, LEE Y J, et al. A supervised featureprojectionbased realtime EMG pattern recognition for multifunction myoelectric hand control[J].IEEE/ASME Transactions on Mechatronics, 2007, 12(3): 282-290. 被引量:1

二级参考文献20

  • 1张丽新,王家廞,赵雁南,杨泽红.基于Relief的组合式特征选择[J].复旦学报(自然科学版),2004,43(5):893-898. 被引量:44
  • 2Mao K Z.Fast ortlaogonal forward selection algorithm for feature subset selection[J].IEEE Trans Neural Networks, 2002, 13 (5) : 1218-1224. 被引量:1
  • 3Wei Hua-liang, Billings S A.Feature subset selection and ranking for data dimensionality reduction[J].IEEE Trans Pattern Analysis and Machine Intelligence, 2007,29 ( 1 ) : 162-166. 被引量:1
  • 4Liu Y,Zheng Y F.FS SFS:A novel feature selection method for support vector machines[J].Pattem Recognition,2006,39: 1333-1345. 被引量:1
  • 5Jain A K,Duin R, Mao J C.Statistical pattern recognition a review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 ( 1 ) : 4-37. 被引量:1
  • 6Martin-Bautista M J, Vila M A.A survey of genetic feature selection in mining issues[C]//Proceeding of the 1999 Congress on Evolutionary Computation.NJ:IEEE Press,1999:13-23. 被引量:1
  • 7Kira K, Rendell L.The feature selection problem: Traditional methods and a new algorithm[C]//Proceedings of the Ninth National Conference on Artificial Intelligence.New Orleans: AAAI Press, 1992 : 129-134. 被引量:1
  • 8Kononenko I.Estimation attributes: Analysis and extensions of RELIEF[C]//Bergadano F, De Raedt L.Proceedings of the 1994 European Conference on Machine Learning.Catania,Italy:Springer Verlag, 1994:171-182. 被引量:1
  • 9Vapnik V N.Statistical learning theory[M].[S.l.]. John Wiley & Sons, 1998. 被引量:1
  • 10Langley P. Selection of relevant features in machine learning [A].In: Greiner R,eds.Proc AAAI Fall Symposium on Relevance [C].New Orleans:AAAI Press,1994.140-144. 被引量:1

共引文献65

同被引文献166

引证文献18

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部