摘要
Inγ-ray imaging,localization of theγ-ray interaction in the scintillator is critical.Convolutional neural network(CNN)techniques are highly promising for improvingγ-ray localization.Our study evaluated the generalization capabilities of a CNN localization model with respect to theγ-ray energy and thickness of the crystal.The model maintained a high positional linearity(PL)and spatial resolution for ray energies between 59 and 1460 keV.The PL at the incident surface of the detector was 0.99,and the resolution of the central incident point source ranged between 0.52 and 1.19 mm.In modified uniform redundant array(MURA)imaging systems using a thick crystal,the CNNγ-ray localization model significantly improved the useful field-of-view(UFOV)from 60.32 to 93.44%compared to the classical centroid localization methods.Additionally,the signal-to-noise ratio of the reconstructed images increased from 0.95 to 5.63.
基金
supported by the National Natural Science Foundation of China(Nos.41874121 and U19A2086)。