期刊文献+

Small Sample Gear Fault Diagnosis Method Based on Transfer Learning

Small Sample Gear Fault Diagnosis Method Based on Transfer Learning
下载PDF
导出
摘要 Aiming at the problems of lack of fault diagnosis samples and low model generalization ability of cross-working gear based on deep transfer learning, a fault diagnosis method based on improved deep residual network and transfer learning was proposed. Firstly, one-dimensional signal is transformed into two-dimensional time-frequency image by continuous wavelet transform. Then, a deep learning model based on ResNet50 is constructed. Attention mechanism is introduced into the model to make the model pay more attention to the useful features for the current task. The network parameters trained by ResNet50 network on ImageNet dataset were used to initialize the model and applied to the fault diagnosis field. Finally, to solve the problem of gear fault diagnosis under different working conditions, a small sample training set is proposed for fault diagnosis. The method is applied to gearbox fault diagnosis, and the results show that: The proposed deep model achieves 99.7% accuracy of gear fault diagnosis, which is better than the four models such as VGG19 and MobileNetV2. In the cross-working condition fault diagnosis, only 20% target dataset is used as the training set, and the proposed method achieves 93.5% accuracy. Aiming at the problems of lack of fault diagnosis samples and low model generalization ability of cross-working gear based on deep transfer learning, a fault diagnosis method based on improved deep residual network and transfer learning was proposed. Firstly, one-dimensional signal is transformed into two-dimensional time-frequency image by continuous wavelet transform. Then, a deep learning model based on ResNet50 is constructed. Attention mechanism is introduced into the model to make the model pay more attention to the useful features for the current task. The network parameters trained by ResNet50 network on ImageNet dataset were used to initialize the model and applied to the fault diagnosis field. Finally, to solve the problem of gear fault diagnosis under different working conditions, a small sample training set is proposed for fault diagnosis. The method is applied to gearbox fault diagnosis, and the results show that: The proposed deep model achieves 99.7% accuracy of gear fault diagnosis, which is better than the four models such as VGG19 and MobileNetV2. In the cross-working condition fault diagnosis, only 20% target dataset is used as the training set, and the proposed method achieves 93.5% accuracy.
作者 Han Zhang Shihao Liu Xiyang Wang Junlong Zhang Han Zhang;Shihao Liu;Xiyang Wang;Junlong Zhang(School of Aircraft Engineering, Nanchang Hangkong University, Nanchang, China)
出处 《Open Journal of Applied Sciences》 2023年第12期2461-2479,共19页 应用科学(英文)
关键词 Gear Fault Diagnosis Transfer Learning CWT Deep Residual Network Deep Learning Gear Fault Diagnosis Transfer Learning CWT Deep Residual Network Deep Learning
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部